
Detecting semantic social engineering attacks with the weakest link: Implementation

and empirical evaluation of a human-as-a-security-sensor framework

Ryan Heartfield, George Loukas

Computing and Information Systems
University of Greenwich, UK
E: r.j.heartfield@gre.ac.uk

Abstract

The notion that the human user is the weakest link in information security has been strongly, and, we argue, rightly
contested in recent years. Here, we take a step further showing that the human user can in fact be the strongest link
for detecting attacks that involve deception, such as application masquerading, spearphishing, WiFi evil twin and other
types of semantic social engineering. Towards this direction, we have developed a human-as-a-security-sensor framework
and a practical implementation in the form of Cogni-Sense, a Microsoft Windows prototype application, designed to
allow and encourage users to actively detect and report semantic social engineering attacks against them. Experimental
evaluation with 26 users of di↵erent profiles running Cogni-Sense on their personal computers for a period of 45 days
has shown that human sensors can consistently outperform technical security systems. Making use of a machine learning
based approach, we also show that the reliability of each report, and consequently the performance of each human sensor,
can be predicted in a meaningful and practical manner. In an organisation that employs a human-as-a-security-sensor
implementation, such as Cogni-Sense, an attack is considered to have been detected if at least one user has reported it.
In our evaluation, a small organisation consisting only of the 26 participants of the experiment would have exhibited a
missed detection rate below 10%, down from 81% if only technical security systems had been used. The results strongly
point towards the need to actively involve the user not only in prevention through cyber hygiene and user-centric security
design, but also in active cyber threat detection and reporting.

1. Introduction

In information security, it is often posited that the hu-
man user is the “weakest link” [1, 2, 3] because even the
strongest technical protection systems can be bypassed
if an attacker successfully manipulates the user into di-
vulging a password, opening a malicious email attach-
ment or visiting a compromised website. Deception-based
threats targeting the user are both a pervasive and exis-
tential threat to computer systems, because on any system
the user-computer interface is always vulnerable to abuse
by authorised users, with or without their knowledge. It
is well known that users are key for configuring security
mechanisms. Here, we show that they can also be better
than technical security measures at detecting threats, es-
pecially when a threat is based on deception of the user
rather than exploitation of a specific technical flaw. Our
scope is on semantic attacks defined in [4] as ”the manip-
ulation of user-computer interfacing with the purpose to
breach a computer system’s information security through
user deception”. Table 1 describes the variety of such at-
tacks in the wild today, with an indicative selection of 25
di↵erent types, and Figure 1 illustrates a sample of these
attacks to highlight their deception vectors visually.

With such extremes in diversity, there is an increas-

ing need to develop defences that can operate holistically
across the wider attack space. As semantic attacks tar-
get the user-computer interface, it is particular di�cult
for technical defences to identify them. This is because
attacks primarily employ cosmetic or behavioural decep-
tion vectors which typically leave very few technical traces
for a computer program to analyse. Technical defences
do exist and some have been shown to work very well for
certain threats (e.g., phishing emails), but can be very
poor at detecting conceptually almost identical attacks on
di↵erent platforms (e.g phishing instant messaging). De-
ploying a di↵erent technical defence for each of the se-
mantic attacks that an organisation may be targeted by
is, of course, impractical. For technical defence systems
to stand a chance in detecting a wide range of semantic
attacks, defence mechanisms would require the ability to
interpret both visual and behavioural information, con-
textually and across multiple user-interface platforms. We
argue that this makes the human user an attractive can-
didate for actively participating in detection.

2. The Human-as-a-Security-Sensor paradigm

From a system standpoint, humans are autonomous,
multisensory systems, equipped with the ability to pro-

Attack Pseudonym Description

Phishing Attempt to obtain access to sensitive information by disguising as a trustworthy entity in an electronic communication
Spear phishing Phishing attack designed to target a specific person/organisation/system
QRishing Phishing attack using quick response (QR) codes (to disguise a link to malicious website or file)
Blue Snarfing Phishing attack enticing a user to install a malicious file allowing access to the users device via the bluetooth protocol
Smishing Phishing attack on simple message service (SMS) in mobile devices
DriveyBy download Implanting a malicious file on a vulnerable web platform
Waterhole Highly targeted DriveBy download attack, implanting on specific websites target visits
File Masquerading Disguising a malicious file to appear as a legitimate file type
Multimedia Masquerading Disguising a malicious application appear as multimedia (e.g., video)
GUI Confusion A mobile application confusing users by impersonating another (e.g., banking app) to obtain sensitive information
Visual SSL spoofing Using fake SSL verification logos or GUI components to deceive users into thinking they are on a secure website
Scareware Malicious program tricking a user into buying/downloading unnecessary often malicious software, such as fake antivirus
Malvertisement An online advertisement that incorporates or installs malware.
WiFi Evil Twin A fraudulent WiFi access point that often spoofs other nearby access points that appears to be legitimate.
Trojan Horse Type of malware that is often disguised as legitimate software, such as a game that also acts as a key-logger.
Self XSS Operates by tricking users into copying and pasting malicious content into their browsers’ web developer console.
Typosquatting Form of cybersquatting relying on typographical errors made by users when inputting an address into a browser.
Tabnabbing A type of phishing where a website changes to impersonate popular websites
Sharebaiting Enticing content posted on social media which users share on their profile, spreading fake apps, news and phishing URLs
Click Jacking Concealing hyperlinks beneath legitimate click-able content, causing the user to commit hidden actions
Cursor Jacking Variation of clickjacking, users are deceived by a custom cursor image where the pointer is displayed with an o↵set.
Spamdexing Manipulation of search engine indexes where a website repeats unrelated phrases to manipulate relevance or prominence
Torrent Poisoning Intentionally sharing corrupt data and malware with misleading file names using the BitTorrent protocol
Fake App Variation of trojan horse, rogueware, scareware on mobile devices where a malicious app masquerades as a legitimate one
Fake Plugin Malicious social media plugin typically spread by automatically re-posting a fake video to victims’ and friends profile

Table 1: Examples of semantic attacks observed in the wild

duce inferential output data based on multiple experien-
tial and environmental input data. This capability means
that humans (as physical sensors) are often well placed
to provide information in various contexts where technical
systems alone are not adequate. Taking into consideration
the user-computer interface, which is the primary interface
targeted by semantic attacks, it is therefore implicit that
human sensors are able to perform detection across all pos-
sible platforms and systems in which semantic attacks may
be deployed.

The aim of the Human-as-a-Security-Sensor (HaaSS)
paradigm, where user reports are encouraged and taken
into account so as to strengthen an organisation’s cyber
situational awareness [5], is not to replace technical secu-
rity systems, but to complement or augment existing tech-
nical means in detecting and mitigating certain semantic
attacks by leveraging human sensing capacity and experi-
ence. In fact, despite many advancements in technical de-
fences against semantic attacks, it has long been realised
in the security industry that the users need to be at the
core of any system’s security design [6, 7, 8, 9, 10, 11, 12].
Our aim is to progress a step further, by empowering users
to directly contribute to the security of themselves, their
organisation and even the wider community. For the detec-
tion of semantic social engineering attacks, users require
an interface that provides them with functionality to re-
port suspicious or anomalous activity that uses deceptive
attack vectors rather than technical exploitation; for which
the human user often is a more accurate sensor than an
organisation’s technical security systems.

More specifically, HaaSS can be used to actively en-
hance existing technical defence mechanisms by combining

telemetry generated by user threat detection with threats
flagged by technical defence platforms; helping confirm
the existence and highlight the extent of the threat, or
crucially, for detecting semantic attacks that have been
largely undetectable by technical systems. In this capac-
ity, HaaSS allows for proactive and preemptive detection
of semantic attacks by positioning (and empowering) the
user as a platform security sensor in order to identify and
report suspected attacks in real-time.

For the function of HaaSS in the context of seman-
tic attacks, as well as the wider computer security threat
space, we propose the following definition:

Human-as-a-Security-Sensor. The paradigm of lever-
aging the ability of human users to act as sensors that can
detect and report information security threats.

Over the last few years, the concept of the human as
a sensor has seen increasing application for the detection
of threats and adverse conditions in physical space, for
instance to detect unfolding emergencies [13] and noise
pollution [14], and monitor water availability [15]. These
successes in physical space have served as motivation for
applying and evaluating the concept in detection of threats
in cyber space too, especially for semantic social engineer-
ing attacks, where technical security mechanisms have tra-
ditionally been limited in scope or accuracy. Hence, our
goal here is to design a complete HaaSS framework, apply
it in the implementation of a prototype HaaSS system,
and evaluate it in a real-world context on variety of novel
semantic social engineering attacks and against existing
technical security mechanisms.

2

Figure 1: Example semantic attacks: 1) Phishing e-mail 2) Typosquatting 3) Social media multimedia masquerading 4) WiFi Evil Twin 5)
QRishing

2.1. Related Work

Initial work in human sensor networks, instead of util-
ising direct human sensor information (e.g., a social media
post), has employed the metadata generated by humans
(e.g., mobile phone location data) for modelling and de-
veloping situational awareness in natural disasters [16, 17].
However, in [18], Wang et al. have explored the con-
cept of human sensor networks and associated data formed
through social networks. The researchers have suggested
analysing the reliability of human sensor reporting based
on the modeling of networked human sources who report
observations (in the physical world), the filtering of unre-
liable report data, and the evaluation of an algorithm that
can distinguish between reliable and unreliable data in the
real-world. Developing a derived maximum likelihood esti-
mation model, Wang et al. have utilised data from Twitter
to evaluate their model’s ability to accurately determine
the corrections of reports from humans sensors.

In the context or computer security, Stembert et al.
[19] have recently proposed combining a reporting func-
tion with blocking and warning of suspicious emails and
the provision of educative tips, so as to harness the in-
telligence of expert and novice users in detecting email
phishing attacks in a corporate environment. Initial exper-
imental results of their mock-up have been encouraging for
the applicability of the HaaSS concept in detecting phish-
ing email threats. Another recent example was demon-
strated by Malisa et al. [20], who developed an accurate

and automated mobile application spoofing detection sys-
tem by leveraging user visual similarity perception; inte-
grating the human sensing data collected as a component
of the technical system’s detection decision making. In
the case of both approaches, to accurately detect the spe-
cific semantic attack, each defence system explicitly relies
on user expertise and knowledge. However, each system
is also limited in the same way as conventional defence
systems, in that they are attack-specific.

In the commercial space, security companies PhishMe
and Wombat Security have developed security products
that specifically integrate reporting software into organi-
sations’ email and web platforms in order for users to re-
port suspected phishing attacks, thereby providing a form
of human sensor detection telemetry that is used by an
organisation to respond to credible threats. PhishMe Re-
porter [10] provides users with a simple email client add-
in (across a limited range of e-mail software applications
only) which allows users to click on a reporting button that
forwards suspicious emails to an organisation’s internal se-
curity team. When combined with PhishMe Triage [21],
user reported emails are forwarded to a phishing-specific
incident response platform that allows for automatic anal-
ysis, prioritisation and response (through integration with
other security platforms such as anti-malware) by an or-
ganisation’s security operations centre (SOC). Wombat Se-
curity’s PhishAlarm and PhishAlarm Analyser [11] pro-
vide conceptually similar features to PhishMe Reporter

3

and PhishMe Triage, respectively, but have extended user
reporting options to include SMS and USB phishing at-
tacks, as well as implementing a machine learning ap-
proach to provide a real-time ranking of reported emails’
predicted threat potential.

At organisational level, there are examples of in-house
security teams which have begun to set up platforms and
information security teams with the purpose to draw on
their user base for detection of suspected threats. For
instance, the Cyber Emergency Response Team at Oxford
University have established an information security policy
that employs users as sensors of suspected phishing threats
through a reporting portal that encourages students and
sta↵ to report suspected phishing attacks on websites and
email [8].

Online open-source community platforms have demon-
strated the utility of human sensors of phishing threats
in a crowd-sourcing context by allowing anonymous user
reporting of suspected phishing emails and websites. For
example, the well-known online phishing repository Phish-
Tank [22] provides Internet users with a platform in which
to anonymously report and review suspected phishing web-
sites and emails, with report classification (e.g., attack /
no attack) performed by means of majority vote amongst
PhishTank community users. By comparison, another open-
source platform called Millersmiles [23] limits online users
reporting to a simple form that captures suspected phish-
ing emails.

At the time of writing, however, existing commercial,
organisational and community-led crowd-sourcing human
sensor platforms remain relatively immature, due to the
lack of a formal framework on which to base the imple-
mentation of HaaSS systems, and almost exclusive focus
on phishing attacks; which addresses only a small portion
of the problem space. Furthermore, commercial o↵erings
are currently designed for organisations, and are therefore
impractical for personal users to engage with. Perhaps
most important is the absence of a means to measure sen-
sor reliability which is based on generic susceptibility indi-
cators, applicable across a wide range of semantic attacks
vectors. As a result, it remains unclear how performance
metrics generated solely from phishing reports can provide
a lasting or accurate measure of human sensor detection
e�cacy when faced with other deception-based threats.

The taxonomy presented in [4] has simplified the se-
mantic attack problem space into a set of fixed classifica-
tion criteria, which was then utilised to compare attacks’
functional constructs against the existing state-of-the-art
for defence. The approach elicited key defence techniques,
which in combination, were shown to address the full at-
tack space, namely, user awareness, machine learning and
sandboxing. However, up til this point, no approach to
defence had combined these defence elements into a single
architecture for detecting and preventing a wide range of
semantic attacks.

In [5], Heartfield et al. have demonstrated how user
susceptibility to semantic attacks can be reliably predicted

by utilising a user’s profile features which can be measured
ethically, automatically and in real-time. Conducting a
large scale study of over four thousand participants and
a smaller study of over 315 participants, they developed
machine learning models for predicting a user’s detection
e�cacy in reporting suspected threats across a range of dif-
ferent semantic attacks. Crucially, the approach allowed
for the models and feature-set to be integrated directly
into a technical system as a tool for measuring the reli-
ability of HaaSS reports for classification and prioritisa-
tion. Expanding on this preliminary work, in [24], the
same authors conducted a preliminary laboratory-based
study which integrated the machine learning models into
an early prototype HaaSS system. As per the conclusions
made in [5], the results of the initial study demonstrated
the reliability of a users attack reporting (and therefore
attack detection e�cacy) depends on the human sensor’s
activity profile, as defined by characteristics including the
amount and type of security training, familiarity with each
system, frequency and duration of system access etc.

However, before building a system that depends exten-
sively on a particular type of sensor (and the human sen-
sor is no exception), one needs to be able to measure or
estimate its overall reliability in a representative environ-
ment. In the case of HaaSS, and forming the basis of this
work, this means expanding upon theoretical observations
typically made under survey, questionnaire or laboratory
conditions (which often limit the ability to produce lasting
empirical conclusions about a security system’s practical
usefulness [25]), by testing the concept under real-world
conditions.

Here, we comprehensively evaluate the HaaSS concept
for detecting semantic attacks by designing a technical
HaaSS framework, and developing, deploying and testing a
prototype HaaSS system in a real-world context and across
a wide range of semantic attacks. Initial work presented
in [24] has sought to test users’ ability to detect semantic
attacks as HaaSS sensors within an interactive laboratory
environment using a specifically developed reporting mech-
anism. In this early work, the primary goal was to evaluate
whether users would utilise e↵ectively a reporting function
to capture suspected threats within a role-play scenario;
comparing their simulation performance against a number
of existing technical defences for the same attacks.

In this work, we evaluate the HaaSS concept end-to-
end, from initial HaaSS sensor attack detection to final
report classification by a HaaSS platform’s security op-
erations analyst; systematically putting to the test all the
components of a HaaSS system’s framework, under empiri-
cal, real-world conditions.We begin by providing a detailed
breakdown of the frameworks core functions to be used by
researchers and developers as a systematic blueprint on
which to develop their own HaaSS systems. Then, by ex-
panding considerably on the initial work presented in [24],
we develop fully the Human-as-a-Security-Sensor frame-
work with automatic HaaSS sensor integration, addition
of automated sensor collection for activity-based features,

4

the online HaaSS remodelling functionality, and imple-
mentation of cloud based reporting for self-e�cacy based
features, in a revised version of Cogni-Sense, our proto-
type HaaSS system developed using the framework archi-
tecture. Benefiting from the complete implementation of
the framework, we have conducted the first empirical ex-
periment for utilising a HaaSS system in the context of
semantic attack detection, across several more types of at-
tack vectors beyond those used in [24]. Uniquely, we have
also compared the results of the HaaSS sensors against
a wide range of technical platforms and systems which
claim to provide protections against such threats. More-
over, beyond an initial technical defence evaluation made
in [24], here we test against a set of new attacks against a
wide range of existing technical defences which also include
those that exist on participant’s own devices as part of the
real-world experiment; which are subsequently shown to
have e↵ectively no impact on user’s ability to detect and
report suspected semantic attacks.

At the time of writing, this report represents the first
empirical HaaSS experiment that addresses a wide range
of existing and emerging semantic attacks, outside of a
traditional laboratory environment.

3. A Human-as-a-Security-Sensor framework archi-
tecture

To build upon the work in [5] and systematise HaaSS
sensors within a practical and technical defence system,
we propose a HaaSS framework formulated by a set of
three core processes which organise users as physical sen-
sors (i.e., the HaaSS Sensor) within a typical cyber secu-
rity defence architecture. Below, each of the processes are
described according to their domain-specific functions in
the HaaSS framework. Each discrete process (attack de-
tection, classification and response) represents a collection
of modular technical system functions.

• Process 1 - Detection. For a HaaSS sensor, threat
detection can be an active or passive process depending on
the context of attack exposure (e.g., actively searching for
threats, or symptomatic exposure based on their activity
profile). The detection process also continuously monitors
HaaSS sensors to establish their detection e�cacy across
di↵erent user-interfaces.

• Process 2 - Classification. Here, HaaSS threat re-
porting is translated into decision actions for informing
or triggering technical security measures. Scoring of the
detection e�cacy is employed as a filter to automatically
respond to, forward or prioritise reports for manual review.

• Process 3 - Response. The result of an attack report
classification (e.g., detection decision: true/false) is the
deployment of threat mitigation functions (e.g., blocking
a website URL, adding an email domain to spam lists, cre-
ating a malicious file signature, or sending out user threat

awareness notifications) or otherwise. This process is also
responsible for feeding back classification decisions with
the aim to improve classification accuracy whilst adapting
to a specific HaaSS sensor-base.

Using these high-level process-driven constructs, the
HaaSS framework is formulated as an architecture with a
series of functional components on a linear path (Figure
2). In the next subsections, each component is described in
detail as to their role and function. Experimental system
settings are included as tested in the prototype technical
implementation called Cogni-Sense, which is discussed in
detail in section 4.

Detection system process: functional components

• User Interface (semantic attack exposure). The
user interface is an implicit component in the HaaSS frame-
work and the source of all HaaSS sensors exposure to se-
mantic attacks. The user interface applies to any com-
puter system, whether served locally, remotely, by cyber
or physical means.

Feature collection. HaaSS sensor activity on the
user-computer interface generates real-time profile data to
formulate the features for computing a HaaSS sensor’s de-
tection e�cacy. Certain feature data are generated through
HaaSS sensor interaction with the user interface and are
collected by a HaaSS reporting platform integrated with
the user interface. Where practical, feature monitoring
can be automatic, but for specific features, such as self-
e�cacy based data, manual HaaSS sensor input may be
required. Features can be collect both locally or remotely
depending on implementation (e.g., whether computer se-
curity training records are referenced in a local or remote
database).

• Sensor Report (Feature interpolation and attack
data) An attack report is initiated by a HaaSS sensor
when a suspected semantic attack is detected. The HaaSS
report interface provides a mechanism for generating an
attack report using the existing user interface available
to the HaaSS sensor. A report captures, in real-time, the
HaaSS sensor feature-set for the specific attack report con-
text (e.g., for the specific platform). The sensor report
extracts the HaaSS sensor feature-set, where raw feature
data is interpolated and discretised into a format read-
able by the HaaSS susceptibility model, as described in
more detail in section 3.1.1. The formatted feature-set is
unique to each report, formulated dynamically based on
the attack report context and time. The sensor report at-
taches attack data alongside HaaSS features to be sent for
classification and response (e.g., defence). In a HaaSS re-
port, the attack data can be built by extracting key threat
information automatically from the user interface or allow-
ing manual data input by the HaaSS sensor. For exam-
ple, attack data may consist of video, images, files, links,
interface meta-data, text description (supplied by HaaSS
sensor) and diagnostic data on the platform serving the

5

Figure 2: Human-as-a-Security-Sensor defence framework

user interface. Sensor reports are delivered to a remote
platform for classification in the HaaSS attack detection
validation component, where attack data is forwarded to
a semantic attack sandbox and HaaSS features are used to
compute the sensors detection e�cacy for the report.

Classification system process: functional components

• Compute HaaSS Score H (HaaSS features). A
focal point of the HaaSS framework is the measurement of
HaaSS sensor detection e�cacy and reliability for semantic
attacks reports. The H score forms the primary decision
making process within the HaaSS framework and provides
a mechanism to distinguish between credible threats for ex-
ecuting defence mechanisms. HaaSS report classification
is initiated on-demand when an attack report is received
by a HaaSS sensor and is computed as a validation mea-
surement of the HaaSS sensor’s attack detection e�cacy.
The validation measure utilises a susceptibility model (us-
ing the approach developed in [5]) to generate a detection
probability metric which we coin as the HaaSS score (H).
The H score is primarily used to determine the likelihood
of whether a HaaSS report is a credible semantic attack
or not, which, depending on the score and classification
threshold defined, would result in automatic classification
and immediate execution of security enforcing functions
for reports classified as attacks. Alternatively, it is used
to inform manual report classification of the likeliness of
the report being a semantic attack. By default, once com-
puted, each attack report received by a HaaSS sensor is
assigned a H score generated based on the reports accom-
panying HaaSS features. We expand considerably upon
the concept of the H Score (H) in section 3.1.

• Report repository (Attack data, HaaSS features
and the Semantic attack sandbox). Within the HaaSS
framework, the report repository stores all received HaaSS
reports received by HaaSS sensors and serves as the storage

source which supplies attack data and report information
for review and classification in a semantic attack sandbox.
Conventional computer security sandboxes are designed as
safe containers which evaluate heuristically the semantics
of untrusted code execution, or the meta-data of computer
system files in a secure environment away from the host
computer platform to detect attack patterns or anomalous
activity. In HaaSS, the semantic attack sandbox is de-
signed to expose behavioural and cosmetic user-interface
attributes for analysis, to distinguish between legitimate or
malicious intent (as suspected by the HaaSS sensor). As
deception vectors (see taxonomy in [4]) primarily target
the user-computer-interface, instead of technical software
analysing system behaviour, it is human users who form
part of the sandbox architecture by analysing the system
behaviour through human sensory (e.g. visual interpreta-
tion). Here, human users security operators of the HaaSS
system or peer HaaSS sensors. Currently there exist a
number of online platforms providing sandbox functional-
ity for email and website phishing, but to a limited extent.
Online phishing repository PhishTank provides a web in-
terface for reporting and reviewing phishing website and
email attacks, supplying a screenshot of the report and for
phishing websites the ability to interact with the attack
itself via a HTML iframe (providing the phishing website
not been removed from circulation) [22]. However, phish-
ing email archive Millersmiles provides only a simple text
scrape of phishing emails for review [23]. Unlike the HaaSS
framework, these environments are limited to phishing at-
tacks, do not integrate with security systems and provide
no mechanism for report prioritisation based on the re-
porters’ detection e�cacy profiles. In the framework, all
HaaSS sensor reports are forwarded to the semantic at-
tack sandbox in a secure container for analysis, which also
provides a mechanism for pro-active defence, where report
classifications can be reviewed again if historic automatic

6

or manual classifications turned out to be incorrect.

• Susceptibility threshold (�). The HaaSS score sus-
ceptibility threshold controls when the system automati-
cally classifies a HaaSS report as an attack (1), non-attack
(0) or whether it defaults to an unclassified state (e.g.,
NULL). The threshold allows for adjustable control of false
positive and false negative report classification, which vary
depending on the HaaSS score model accuracy. For a con-
figured threshold, if the upper or lower threshold is met,
the HaaSS report is automatically classified (which also
serves to automatically set the response label when adding
the report to the HaaSS model training and validation
dataset). In the case of an unclassified report state (i.e.,
HaaSS score <upper threshold and > lower threshold), the
HaaSS report is marked as unclassified in the semantic at-
tack sandbox for manual classification. Here, the HaaSS
score is then utilised as a prioritisation metric for manual
classification by a HaaSS report reviewer (e.g., security
operations/platform personnel).

Response system process: functional components

• Rule enforcement (System and user defence). The
classification of each HaaSS report results in an attack de-
cision which is true or false, which results in a response
that issues a security enforcement function on a set of
pre-configured rules based on the context of the report.
This involves implementing a function that would protect
against the semantic attack on the system or user and
requires the HaaSS system to have a security enforcement
module (SEM) that is integrated locally or remotely to ex-
ternal technical security platforms. The rule enforcement
process provides traceability of HaaSS sensing and detec-
tion through to autonomous and preemptive defence mea-
sures against semantic attacks, by utilising report attack
decision to invoke rule enforcement that results in techni-
cal security configuration and execution. For example, in
the case of an organisational HaaSS system, for a HaaSS
report of a phishing website classified as credible (auto-
matically or manually), the HaaSS system can enforce a
rule that sends a configuration setting to the organisa-
tions web proxy (using the port website URL) to block
the phishing website. This would require API connectiv-
ity or middle-ware to translate the rule to configuration
input. Another example, in a wider use case setting might
be email distribution containing the details of the phishing
website which is sent to all HaaSS subscribers (e.g., home
internet users and other HaaSS sensors using the system).
For each attack decision response, the HaaSS features and
attack decision (true or false) are fed back into the H score
training sample for the H score adaptive remodelling func-
tion.

• HaaSS Score adaptive remodelling. Adaptive re-
modelling is a continuous feedback mechanism designed
to learn the behaviours and profiles of a HaaSS sensor-
base by periodically re-training the HaaSS score predic-
tion model and improving its accuracy. The remodelling

procedure activates when the overall HaaSS detection dis-
tribution within the training data has deviated signifi-
cantly from the HaaSS score models’ original training data
distribution. Here, by distribution we refer to the user
detection rate which is based on the number of HaaSS
report samples with correct or incorrect classification in
the most recent baseline training and validation dataset.
The task is periodic (e.g., running once a day, week or
month), employing mean deviation as the trigger to in-
voke remodelling. The calculation takes x as the values
of the most recent base-lined training data distribution
and the current (at that point in time) distribution where

mean deviation =
P

|x�µ|
2 . If distribution exceeds a spe-

cific deviation threshold (with experiment configuration
set as 0.5), remodelling is invoked. When remodelling is
triggered the HaaSS score model is retrained on the most
current HaaSS data sample with any tuning parameters
defined i.e., train and test sample split, machine learning
algorithm, cross-validation (CV), automatic feature selec-
tion. After retraining, the HaaSS score model’s predic-
tive performance is reviewed at di↵erent class probability
thresholds to define the optimum threshold (�) for min-
imising false positives or false negatives when computing
the HaaSS score and setting the threshold for automatic or
manual report classification as defined in the classification
process. Adaptive remodelling can be configured to run as
an autonomous process, or manually by a HaaSS system
administrator.

3.1. The HaaSS Score: predicting sensor reliability

Similarities between computer-based and human-based
security sensors can be drawn by a mutual requirement to
measure their attack detection accuracy. Here, a major
distinction is that each human sensor’s detection accuracy
is di↵erent and is based on their own detection e�cacy
profile. For this reason, we employ a metric, which we call
the H score, to represent the trustworthiness of a HaaSS
report in terms of the sensor’s predicted detection e�-
cacy for the particular report’s context. The H score is
computed by extracting a HaaSS sensor’s most recent de-
tection e�cacy profile attributes (i.e., their susceptibility
indicator predictors) at the point in time that a report is
initiated.

Determining a set of features to accurately predict a
human sensor’s detection e�cacy when exposed to a se-
mantic attack is challenging. This is especially true when
these features are required to be integrated into a real-
world technical system, where they need be measured eth-
ically, automatically and preferably in real-time. These re-
quirements render psychological (e.g., being stressed), per-
sonality (e.g., conscientiousness) and demographic based
features (e.g., age, gender, ethnicity etc.) of little prac-
tical use. Furthermore, depending on the HaaSS sensor-
base, certain features may prove to perform better than
others and therefore the utility of HaaSS features may be
influenced contextually. The HaaSS framework does not

7

strictly stipulate a particular susceptibility modelling al-
gorithm or features for computing the H score. For the
prototype development of Cogni-Sense, we have utilised
the susceptibility model and features developed in [5]. We
expand on the Cogni-Sense H score model in section 4.

In the HaaSS framework, the H score facilitates three
key objectives of HaaSS sensor reporting, (1) classification
of HaaSS reports (i.e. credible semantic attack / not a
credible semantic attack) in order to enforce automated
security enforcing functions where necessary, (2) prioriti-
sation of HaaSS reports based on detection e�cacy of sen-
sor for manual classification (where the reports H score
is either too low or too high for automatic classification),
with the aim to minimise the exposure time of vulnerable
users by enforcing review precedence, and (3) the ability
for a HaaSS system to learn and adapt to the changing de-
tection e�cacy profiles of its incumbent HaaSS sensor-base
through remodelling to improve prediction accuracy of the
H score. In these applications the H score can function in
two modes independently or simultaneously, classification
mode for autonomous, system-initiated security enforce-
ment and prioritisation mode for manual, human-initiated
security enforcement. In classification mode, the H score
probability is evaluated against a system defined classifica-
tion threshold which determines whether automatic report
classification will occur. Depending on the H score model
and its overall accuracy ([5] reported an overall accuracy
of 71%), di↵erent classification thresholds will result in ei-
ther higher false positives or false negatives or an optimum
minimum for both. For prioritisation mode, the higher the
probability, the more trustworthy the report and therefore
the higher precedence it is a↵orded by manual human re-
view and classification.

The H score is primarily designed as a mechanism for
accurate treatment of semantic attack reports that are re-
ceived from HaaSS sensors, however it can also be utilised
as monitoring tool for continuous analysis of HaaSS sen-
sor “health” as represented by their predicted detection
e�cacy. For example, in the case where a HaaSS sensor
lacks the detection e�cacy to identify a specific seman-
tic attack on a specific user-interface (and platform), it
is reasonable to assume that a report of this particular
threat would never be received from/by this sensor. Con-
versely, for HaaSS sensors that are over-suspicious and
therefore highly sensitive to suspected deception on the
user-computer interface, the HaaSS sensor may be respon-
sible for producing many false positive reports. To iden-
tify these weaknesses and perhaps deliver targeted train-
ing where needed, periodic review of passive H scores for
HaaSS sensor detection e�cacy would be beneficial.

3.1.1. Predictors of detection e�cacy

The features described here are representative of higher-
level feature constructs, which in their own right provide
potential future research avenues for deeper feature discov-
ery and engineering. Auditable features are features which
can be collected in real-time and automatically, either on

the HaaSS sensor’s client-side system or remotely. Fea-
ture collection is a continuous task that initiates at user
log-in and operates passively until the user logs o↵ or shuts
down their system. For remote feature collection, compu-
tation of auditable e�cacy features can be conducted in
a batched type mode, e.g., on demand or in real-time de-
pending on whether all auditable features are sent to a
server-side HaaSS database. Real-time computation can
be less e�cient as platforms forwarding features to the
HaaSS database whether on the users machine or in the
Internet must continuously monitor user activity from dif-
ferent locations and sending multiple data streams over
the network and therefore introduce scalability problems.
Similarly, local feature collection on the user’s system can
be computed in real-time or in a batch type mode. The
process of feature generation, which applies to both local
or remote collection, is presented visually in Figure 3.

Below, we describe the technical process of auditable
feature generation using local batch-mode collection only.
In the HaaSS framework, it is assumed that a continuous
monitoring mechanism collects raw data from each mea-
surable user-interface that the HaaSS sensor accesses and
interacts with (e.g., web platform, application, file, de-
vice etc.). On di↵erent systems and for a range of dis-
parate user-interfaces, the method for collecting raw ac-
cess data from user interaction varies and therefore the
exact technique for raw access collection is not prescribed
within the framework. We do, however, develop a specific
collection technique within the prototype HaaSS platform
Cogni-Sense in section 4. Here, the algorithms for feature
generation and interpolation are designed to function on
any source of raw access data, assuming that the data has
an an accurate timestamp.

• Frequency of access (FR). By default, frequency of
access is measured using a month of activity. For ex-
ample, for user platform activity to be classified with
a frequency of “daily” access (i.e., there is a maximum
of one day elapsed between platform usage), this daily
activity must be continuous for a period of one month,
without more than one day di↵erence between accesses.
Di↵erent frequency transition thresholds can be applied
when increasing or decreasing the frequency granularity
scale. When a HaaSS sensor attack report is initiated,
the user-interface access activity specifically related to
the report (e.g., platform, application, file ... etc.) is in-
dexed in an array of dates ·v, where v1, v2...vn represent
a series of date and time ordered independent days. It
is assumed that the collection mechanism records each
individual access of a platform user interface continu-
ously and therefore may consist of multiple accesses on
the same day. For the frequency algorithm, only the first
recorded platform access is indexed for each specific day.

• Duration of access (DR). The feature measurement
for Duration of access (DR) applies to a monitored user
interface. Here, the same assumption for the access ac-

8

tivity collection mechanism is employed, where it is con-
tinuous for each individual access on a specific day and
therefore may consist of multiple accesses on the same
day. With this in mind, for each access in a period of
one month, each timestamp is ordered to represent a
start and stop elapsed time in seconds for each day.

• Computer Security Training. Computer security
training is measured based on recency from the date
it was last received, based on the training type (S1 -
formal, S2 - work-based, S3 - self-study), delivery (S1
- coursework, S2 - video and games, S3 - video and
websites) and platform type (e.g., email, social media,
e-commerce etc.). Therefore, the elapsed time of com-
puter security training increases until it is reset/reduced
when training is next received. However, its recency is
in relation to the date and time that a HaaSS sensor
is made. Whilst monitoring activity of security train-
ing could utilise the frequency and duration algorithms
for similar measurement criteria, here we assume that
security training is recorded and validated prior to de-
termining the time since it has been received, as well
as the format, delivery method and platform. Security
training is not locally measured, but on receiving a re-
port to the HaaSS system, beforeH score prediction, the
HaaSS sensor’s detection e�cacy features are queried on
the HaaSS system for their security training record.

In [5], each type of security training and the elapsed time
since it was received (i.e., S1:3T) was measured sepa-
rately from the delivery method related to that type
(e.g., formal - coursework, work - games, self-study -
websites and so on), as was elapsed time since secu-
rity training for particular platform types (e.g., email,
social media etc.). However, when measuring security
training periodically it assumed all three would be en-
tered as a single record as representative of a training
received. So, although they are implemented and com-
puted as separate features in the susceptibility model for
generating the H score, it is assumed that there will be
direct, time-based correlations between them that were
not possible to accurately measure in the experiments
conducted in [5]. In Figure 3, a visual representation
of a continuous measurement time line is shown, where
the frequency and duration feature algorithms applies
interpolation and discretisation to raw recorded activity
data from a HaaSS sensor.

For each of the auditable feature collection algorithms,
the discrete measurement scale configuration can be ad-
justed to increase or decrease the granularity of activity
monitoring. Frequency measured on a five point ordinal
scale (daily, weekly, monthly, less than monthly, never) can
be extended to measure a wider access frequency range
(daily, every two days, weekly, every two weeks, every
month, every two months etc.), or reduced to {daily, weekly,
less than weekly}. The same applies to duration of access.
Depending on the range and granularity of the discrete

Figure 3: Real-time collection of auditable HaaSS sensor features
(FR and DR), variable green periods represent variable durations
of access to the same platform and blue periods represent variable
durations of access to other platforms over the period of one day.
Access activity for frequency measurements is made by recording
the first observed access instance for a day on a specific platform.
Features are computed at the point in time when a user reports a
suspected semantic attack for the specific platform in question, where
Rn represents the nth report for jth platform interface accessed by
the HaaSS sensor.

scale, this would either increase the required learning time
to move between frequency threshold e.g., one month for
a five-point scale, or decrease e.g., seven days for a three
point scale such as daily, weekly, less than weekly. The
greater the range of measurement, the more accurate the
picture of HaaSS sensor activity. However, one constraint
for increasing beyond a default scale is the need for retrain-
ing the model to utilise the new feature scale e↵ectively.

Feature Variable Format

Familiarity with platform Not very, somewhat, very

Computer security self-e�cacy Novice to Expert (0:100)

Computer literacy self-e�cacy Novice to Expert (0:100)

Frequency of platform use Never, <1x a month, 1x month, weekly, daily

Duration of platform use None, <30 min, 30 min-1h, 1-2h, 2-4h, >4h

Time since ST (platform) Never, >1y, 1y, 6m, 3m, 1m, 2w

Freq. of platform type use Never, <1x a month, 1x month, weekly, daily

Dur. of platform type use None, <30min, 30min-1h, 1-2h, 2-4h, >4h

Time since ST (plat. type) Never, >1y, 1y, 6m, 3m, 1m, 2w

Time since ST (formal edu.) Never, >1y, 1y, 6m, 3m, 1m, 2w

ST formal edu. (coursework) No, Yes

Time since ST (at work) Never, >1y, 1y, 6m, 3m, 1m, 2w

ST at work (videos) No, Yes

ST Work-based (games) No, Yes

Time since ST (self-study) Never, >1y, 1y, 6m, 3m, 1m, 2w

ST self-study (websites) No, Yes

ST self-study (videos) No, Yes

ST = Infosec training, edu= education, y = year, m = month, w = week

Table 2: Random Forest Susceptibility model HaaSS features used
to compute HaaSS Score H

3.1.2. Self-E�cacy Features

By self-e�cacy, we refer to the generation and measure-
ment of features that are supplied as part of self-assessment
by HaaSS features in real-time (e.g., at the time of a HaaSS
report), or over elapsed time as part of their HaaSS sensor
profile. Whilst we include features that were selected dur-
ing the modelling process in [5], the process for measuring
self-e�cacy applies generally for future features within the
HaaSS framework.

9

• Familiarity with platform. Each time a user initiates
an attack report, the user is required to provide their
self-assessed familiarity for the platform interface they
are reporting an attack on (as previously mentioned here
we refer to the original scale defined in the susceptibil-
ity model developed in [5]). If practically available (e.g.,
in a fully integrated production HaaSS system), FR and
DR features can be used to provide estimated validation
of the familiarity reported by the user to define accepted
correlation threshold’s between the self-assessed famil-
iarity and the actual frequency and duration in which
the user accesses the platform; downgrading the famil-
iarity value if this threshold is not satisfied. This mech-
anism can prevent users claiming familiarity with a sys-
tem they do not use often and as result helps to preserve
the integrity of the familiarity feature. The familiarity
feature is supplied as a report meta-data input within
the HaaSS sensor attack report interface.

• Computer Literacy (CL). When a user updates their
security training automatically through a compatible
platform, or manually through an online form, they are
requested to enter their self-assessed general computer
literacy; using the original scale defined in the suscep-
tibility model developed in [5]. If practically available
(e.g., in a fully integrated production HaaSS system),
the computer literacy metric can be compared against
a user’s recorded and validated computer usage, plat-
form training and qualifications to develop an acceptable
correlation threshold between between these attributes
and the users self-assessed computer literacy. As demon-
strated in experiment 2 in [5], platform-oriented features
for frequency and duration of access can be used to ac-
curately predict a user’s computer literacy self-e�cacy
score. This mechanism can prevent users claiming a
level of computer literacy that they are unlikely to have
attained and as result helps to preserve the integrity of
the computer literacy feature.

• Security Awareness (SA). When a user updates their
security training automatically through a compatible
platform, or manually through an online form, they are
requested to enter their self-assessed general computer
security awareness; using the original scale defined in
the susceptibility model developed in [5]. If practically
available (e.g., in a fully integrated production HaaSS
system), the security awareness metric can be compared
against a user’s recorded and validated computer secu-
rity training, qualifications, correct HaaSS reports and
detection of emulated attacks (e.g., in an embedded se-
curity training tool) to develop an acceptable correla-
tion threshold between these attributes and the users
self-assessed security awareness. As experiment 2 in
[5] demonstrated, features of di↵erent types of security
training can be used accurately predict a user’s security
awareness self-e�cacy score. As with familiarity and
computer literacy features, this mechanism can prevent
users claiming a level of computer security awareness

which they are unlikely to have attained and as result
helps to preserve the integrity of the security awareness
feature.

4. Cogni-Sense: a prototype HaaSS platform

Employing the HaaSS framework as a technical design
blueprint, we have developed a prototype HaaSS platform
called Cogni-Sense. The prototype’s technical architec-
ture is shown in Figure 4, where each of the coloured
boxes within the architecture refer to a component’s func-
tional role within the HaaSS framework’s defence system
processes in Figure 2. By combining each of the system
processes functional components into a real technical sys-
tem, the development of Cogni-Sense provides a HaaSS
sensor with a practical facility to report suspected seman-
tic attacks and a platform in which to evaluate the con-
cept of HaaSS for semantic attack detection. In Table
3 the technical components within Cogni-Sense are sum-
marised, with direct traceability to the HaaSS framework
functional components, by technical integration, platform
configuration and a description of their functionality. The
development of Cogni-Sense in this work demonstrates the
technical feasibility of the HaaSS framework for building
a real-world system around computer users, utilising the
medium of human detection as a physical threat sensor for
semantic attacks.

Framework Cogni-Sense

Component Integration Configuration Component

D
e
t
e
c
t
i
o
n
(
1
)

User interface Local host OS Windows HaaSS sensor
device

Feature
collection

Self-efficacy
auditable

Manual*
Automatic*

Cogni-Sense app

and web form
.

Sensor
report

Host OS
Interface
Data

Windows 7/8/10
Python app
Screenshot
Text description
Deception Vector

Cogni-Sense app

C
l
a
s
s
i
fi
c
a
t
i
o
n

(
2
)

Compute
H score

H score
Metric
Mode

Random Forest
Accuracy
Class probability

H score engine (R)

Report
repository

Repository
Sandbox

MySQL
PHP
Javascript

Report Portal

Classification
threshold

Upper Threshold
Lower threshold

0.85*
0.1*

Python middleware

R
e
s
p
o
n
s
e

(
3
)

Rule
enforcement

Trigger
Rule

Attack classification
Attack email alert

Python middleware
SMTP interface

H Score
remodelling

Distribution
Dev. trigger
Train split
Test split
CV
Feature selection
ML algorithm
ML Tuning

0.59*
0.05
0.8
0.2
10-Fold
RFE
RF
500 trees
Mtry=4

H score engine (R)
Python middleware

*[5] feature selection and threshold definition

Table 3: Cogni-Sense HaaSS platform configuration and alignment
to the HaaSS framework architecture

The Cogni-Sense architecture consists of four key high-
level components, (1) the HaaSS sensor detection platform
(i.e., Cogni-Sense app), (2) a centralised cloud-based plat-
form for classification and security response, (3) a security
operations centre interface (e.g., web browser) that is used
to access the cloud platform and (4) a security enforcement
module (SEM) for the rule enforcement response process
which provides integration between the cloud platform and

10

Figure 4: High-level overview of Cogni-Sense technical architecture

external security platforms. Each of the components are
described below:

• Cogni-Sense app. The HaaSS sensor application is
a multi-process python application that runs locally on
the HaaSS sensor host device OS (in the case it was
programmed for Windows OS). The local host OS was
selected as the platform in which to develop the feature
data collection and attack reporting interface as it pro-
vides the widest coverage of user-computer interfaces.
For example, were the Cogni-Sense app developed as
browser extension it would have only been able to re-
port attacks and collect access activity from the browser
interface, instead of wide range or other interfaces such
as local applications, removable media, cyber-physical
interfaces (e.g., NFC) etc. Therefore, the host OS pro-
vided the largest user-computer interface coverage avail-
able for the HaaSS sensor interface application.

The first process is the HaaSS platform interface ac-
cess activity monitoring for raw feature data collection.
Whilst a number of mechanisms could have been used
to extract platform interface identity, through applica-
tion programmable interfaces (APIs) or graphical user
interface libraries provided by the host OS or third-party
applications, for simplicity we employ the PYWIN32 li-
brary to hook into the Windows WIN32 system for read-
ing the text of applications windows in foreground (e.g.,
focused) of the user-computer interface which provides
platform identity data that represents the identity of the
user interface. This approach is less accurate and robust
than validating directly the platform interface through
an API, but is much less resource-intensive and proved
suitable for the prototype implementation to record raw
data used to create the H score auditable feature-set. In
a production system, other programming platforms such
as C++ (instead of Python) may prove more suitable
for raw feature data collection due to their accessibility
to lower-level interface functions in the host platform
which benefit granular and accurate activity monitor-
ing. For example, the employee monitoring software Ac-
tivTrak [26] provides platform-specific implementations

Figure 5: Platform usage meta-data collected by user activity mon-
itor agent

for Windows and MAC OSX, using C++, to measure
accurately user activity. However, in the case of this
project such development would take extensive devel-
opment time and would be expected to form part of
a production monitoring system, which is outside the
scope of this project. The raw data collection in the
Cogni-Sense app for the activity monitoring process is
shown visually in Figure 5. Platform interface recogni-
tion in the activity recording is performed by matching
the window text in the foreground, using regular ex-
pressions against a known list of platforms in a local
SQLITE database, where platforms not in this list are
recorded as unknown with a watermark which allows for
aggregated access and measurement of this specific un-
known platform. Using this approach we only record
specific platform access as required for the experiments
in this project, preserving the privacy of participants.
However, in a live system the SQLITE database can be
updated with new platforms and interfaces in a mod-
ular fashion in the same approach used to download a
white-list to a spam filter, web proxy or website category
classifier.

The second process is the HaaSS sensor semantic attack
reporting interface, which runs as a process in the sys-
tem tray process as an eye icon, which when clicked,
spawns a reporting window identifying the platform in-
terface (as well as generating the local audi-table HaaSS
features based on the platform context). Using the re-
porting window, the HaaSS sensor enters their platform
interface familiarity self-e�cacy feature, as well as at-
tack meta-data such as suspected attack vector and gen-
eral report-related information. A button is provided to
send the report, which when clicked takes a screenshot
of the user-computer interface, gathers the HaaSS fea-
tures and meta-data and sends the report via HTTP to
the cloud-platform, where classification and security re-
sponse is applied to the HaaSS report. In the case of
the HaaSS features, the feature generation algorithms
described in the HaaSS framework in section 3.1.1 are
programmed directly into Cogni-Sense app. The HaaSS
attack reporting interface is shown in Figure 6.

• Cloud plaform.

11

Figure 6: The Cogni-Sense HaaSS reporting app icon running in
system tray. When clicked, a reporting window is opened with the
detected platform and report information

The cloud component of Cogni-Sense was implemented
within Amazon Web services on a Ubuntu Linux 14.04.3
virtual machine, with 1 GB RAM, a single-core 2.4 GHz
Intel Xeon process with 30 GB of storage. In the cloud
platform, the HaaSS processes of detection, classifica-
tion and security response are coordinated by a Python
middleware which provides integration and communica-
tion between di↵erent components of the system, such
as a MySQL database which stores all HaaSS profile
and report data, an R-based Random Forest H score
engine (i.e., the susceptibility model), an Apache PHP
and Javascript web-server which hosts the HaaSS report
portal and sandbox, as well as interfaces to external se-
curity platform connectivity such as SMTP integration
for confirmed semantic attack alerting and awareness
training.

When a HaaSS attack report is received, it is stored
in the report repository (MySQL database), where the
H score is computed in the H engine, and depending
on the score and configured susceptibility threshold, it
is automatically classified or listed by H score priority
on the report portal live feed dashboard. The report
portal dashboard also includes analytics such as num-
ber of outstanding unclassified reports, the frequency of
reports received, as well as the di↵erent platforms and
platform types reported in attacks; which provides indi-
cations of where attacks are most concentrated or being
targeted. The Cogni-Sense report portal dashboard is
shown in Figure 7.

For the generation of the H scores, Cogni-Sense utilises
the Random Forest susceptibility model developed in [5],
integrating it into the technical system for HaaSS attack

Figure 7: Example of the Cogni-Sense portal live report feed with
predicted H score for HaaSS reports

report classification and prioritisation. Random For-
est is an ensemble decision tree machine learning algo-
rithm, where a large number of decision trees are trained
with di↵erent re-sampled versions of an original dataset
and then each trained decision tree is used to predict
data that was omitted from each sample, achieving low
variance and naturally avoiding overt-fitting [27]. The
model can operate in classification mode (0 or 1) or class
probability mode (0 to 1). As strict classification is sen-
sitive to false positive and false negative output, which
would result in discarding mis-classified accurate reports
or time spent reviewing non-attack reports, we used in-
stead the class probability mode. The use of Random
Forest in this case applies a ”black-box” modelling ap-
proach to H score generation, which results in a loss
of interpretability as to exactly why a HaaSS sensor’s
Cogni-Sense H score given their susceptibility indica-
tors is higher (less susceptible) or lower (more suscep-
tible). However, in comparison to simpler and more
interpretable modelling algorithms, such as Logistic Re-
gression used in [5], Random Forest is more capable of
discovering non-linear relationships between a sensor’s
susceptibility indicators that may not be immediately
obvious or intuitive. To better interpret the results of
the H score, Random Forest provides a measure called
variable importance which describes for each susceptibil-
ity indicator the degree to which it contributes towards

12

H Score model Susceptibility indicators

Random Forest CL (0.114), S3T (0.112), SA (0.107), FR1 (0.099), FA1 (0.097), S3 1 (0.087), S1T (0.073), S2T (0.073), S2 2 (0.068),
FR2 (0.06), DR1 (0.05), S2 3 (0.048), S3 2 (0.048), DR2 (0.046), ST2 (0.039), S1 3 (0.033)

Table 4: Cogni-sense H score Random Forest variable importance for susceptibility indicators

prediction. In Table 4, variable importance is shown for
the H score susceptibility indicators.

• Security Operations Centre (SOC) platform. The
SOC platform refers to the Javascript-based web brows-
ing platform used to interface with the Cogni-Sense cloud-
based platform, where the live feed dashboard (e.g., re-
port portal) and sandbox are located. The report por-
tal live feed is the initial screen presented to SOC en-
gineers (or peer HaaSS sensors) who manually review
and classify semantic attack reports, where on selecting
a report for manual review the image-container sand-
box is opened for the reviewer. The sandbox provides
an expandable image of the HaaSS attack report, the
H score, report meta-data and a classification button
(attack/not an attack) for report review. On selecting
the report classification, the rule enforcement (response
process) is triggered. The sandbox interface is shown
in Figure 8, containing an example HaaSS attack report
received by a HaaSS sensor in the experiment. An ex-
ample of confirmed “semantic attack” classification for
the HaaSS report in the sandbox is shown in Figure 8.

• Security enforcement module (SEM). The SEM
is configured as Python middleware which translates
attack report classification into configuration parame-
ters for security platforms that are integrated with the
HaaSS system. For Cogni-Sense, integration with an
SMTP server has been configured to automatically issue
confirmed semantic attack alerts via e-mail to HaaSS-
sensors. Given the modularity provided by the use of
python middleware, in future iterations of Cogni-Sense,
configuration rules issued via APIs to security products
such as web proxies, anti-virus, firewalls etc., could eas-
ily be developed - however this is outside the scope of
this project. For the confirmed attack report classifi-
cation in Figure 8, SEM semantic attack e-mail alert
response rule is shown in Figure 9.

In the next section, using the prototype HaaSS plat-
form Cogni-Sense, we conduct an empirical case study ex-
periment to evaluate the viability of HaaSS for semantic
attack detection and its advantages over technical defence
methods.

5. Evaluating the concept of HaaSS within a real-
world experiment

In this section we put the prototype HaaSS platform
Cogni-Sense to the test, to evaluate the concept of HaaSS
under the conditions of a real-world scenario and within an

Figure 8: Example Cogni-Sense portal report screenshot for HaaSS
report for Attack 3.2 (Amazon phishing website)

empirical experiment environment. In this case study we
compare the ability for HaaSS sensors to detect each se-
mantic attack’s deception vector [4] against a range of ex-
isting commercially available technical defences. Through-
out the experiment we define detection as the identifica-
tion of the deception within the process of a semantic at-
tack and not the exploitation payload (e.g., execution of
malware). That is, both HaaSS sensors and technical de-
fences are evaluated by their ability to identify each se-
mantic attack as a semantic attack, whereby a detection
failure is recorded as either the HaaSS sensor or technical
defence system allowing the deception vector to run up
to the point of attack payload execution (e.g., clicking a
link, entering login credentials, or opening a file). In cases
where default behaviours of technical defence systems may
implicitly block execution of attack payloads used in the
experiment (e.g., executable file HTML opening an attack
landing page - attack 1.2), as all attack payloads are em-
ulated, this behaviour does not preclude the success of a
real malware instance, which may evade such behaviour

13

Figure 9: Example of classified Cogni-Sense report, on selecting the
option “Real Attack”, the dataset for training the H score prediction
is updated with the reporting users feature-set and classification deci-
sion as the training label. The Security Enforcement Module (SEM)
then carries out any configured rules as part of the attack classi-
fication e.g., adding the report to user awareness training, sending
out a threat alert email or adding the file name to a proxy gateway
blacklist.

and successfully execute.
To measure distinctly di↵erent deception vectors within

a semantic attack, where a complete attack process may
logically consist of multiple phases (e.g., a semantic attack
that directly lead to another separate semantic attack),
we dissect each of the experiments interdependent attacks
by utilising the classification methodology in [5] and treat
each attack phase as a separate attack in its own right.
This approach allows for measuring a HaaSS sensor’s de-
tection e�cacy for each individual deception vectors in
a multi-phase semantic attack (e.g., (1) clicking URL in
email leads to (2) phishing website where entering creden-
tials results in stolen identity). Thus, a user exploitation
to any single phase in a multi-phase attack can also be
viewed as exploitation to an individual semantic attack
(which results in direct compromise e.g., (1) clicking URL
in email leads to drive-by malware installation). For clar-
ity, the attack model in Figure 11 highlights the points at
which each semantic attack detection/exploitation is dis-
sected and measured (deception vector text highlighted in
red).

Figure 10: Cogni-Sense HaaSS report attack classification triggering
SEM module rule: attack awareness email security enforcing function
rule

5.1. Zero-day semantic social engineering attacks

The vast majority of semantic social engineering at-
tacks, when initially launched, are largely undetectable by
technical defence systems, because they primarily employ
cosmetic or behavioural deception vectors and as a result
often leave very small technical footprint that can be easily
analysed by a computer system, especially if the deception
has been designed to utilise legitimate and intended user
functionality [4]. Consequently, technical heuristic detec-
tion capabilities have a limited view of potential attack
vectors through user actions, instead of system interfac-
ing malware. In most cases, technical defence systems are
forced to rely on forensic attack and exploitation reports

Figure 11: Experiment attack model for measuring H score and ex-
ploitation for individual semantic attack’s deception vector in both
singular and multi-phase semantic attacks

14

Attack Emulated Attack Depend. Description

1.1 Spear Phishing Email - Targeted email advertising fake job with GoogleDrive URL to job description PDF
1.2 Cloud Storage File Masquerading 1.1 Malware HTA file masquerading as PDF in online Google Drive folder
2.1a Fake Facebook account - Friend request from fake Facebook account
2.1b IM Phishing - Unsolicited Facebook message containing Facebook page link
2.2 Multimedia masquerading 2.1b Malicious image link masquerading as Facebook video post
3.1 Phishing Email - Amazon order confirmation with tracking URLs leading to phishing website
3.2 Phishing website 3.1 Amazon login phishing website which captures user login details
4.1 Automated IM phishing - Unsolicited Facebook message from non-friend account with shortened URL
4.2 Phishing website 4.1 Facebook login phishing page
5.1 Spear USB - Packaged and branded USB designed specifically for target, delivered in the post
5.2 File masquerading 5.1 Executable masquerading as PDF file

Table 5: Experiment emulated semantic attacks sent to participants with indicated date and time at which the attacks were launched for all
participants (this does not guarantee that participants were exposed to the attacks at the time of launch)

in order to develop attack signatures that can be used to
match and filter potential threats.

For example, it is di�cult to characterise a website as
phishing if the URL is not registered with a spam database,
and does not use obvious tricks such as popular domains
names used as sub-domains, obfuscated by domain su�xes
which are not related to the masqueraded website (e.g.,
www.amazon.net-shopping.tk). In cases where a phish-
ing website name originates from a legitimate and credible
service provider (and does not attempt to obfuscate its
appearance), until the website has been reported as mali-
cious (or contains easily identifiable malicious code or web
re-directions in the web page), most technical defence plat-
forms will not recognise the website as phishing. The same
example can be seen in spam emails where spam protection
mechanisms analyse components such as sender “From”
and “To” address, subject title, domain, hyperlinks, at-
tachments, salutation and common phrases (imposing a
sense of urgency) which match known common patterns
in conventional phishing attacks. However, if the email
body consisted purely of a deceptive image from a domain
name not registered in a black list, then character-based
classification e↵ectiveness is significantly reduced, as the
spam protection is unlikely to have the ability to interpret
the visual information in the image. On the other hand,
human users, are implicitly interfaced with such attributes
and are therefore better placed to decide whether system
activity on the user interface is anomalous or not, based
on their multisensory detection abilities, experience and
knowledge.

As the semantic attacks evaluated in this case study
were developed specifically for the experiment, and conse-
quently have not been seen by technical defence systems
or users before, they are assumed to be zero-day semantic
social engineering attacks at the time of the experiments.
In Figures 13 (semantic attack 2.1 and 2.2) and 12 (se-
mantic attack 3.2), we provide two examples of semantic
attacks executed within the experiment. Table 5 provides
an overview of the full set of semantic attacks tested.

Whilst the majority of attacks employed in this exper-
iment are distributed remotely via the Internet, the spear
USB attack (5.1) branches into physical space and tests

whether HaaSS sensor detection can be useful in detecting
threats that cross a cyber-physical domain. An example
of the spear USB attack is shown in Figure 14 and PDF
file masquerading in Figure 15. Each of the spear USBs
were designed to be targeted by printing on them o�cial
logos associated specifically to platforms the participants
reported to use and have a specific a�nity for in terms of
their Internet profiles.

Figure 12: File masquerading attack in Google drive cloud storage
platform, filename appears to be a PDF but is in fact a HTA file
when downloaded.

5.2. Laboratory environment: technical defence evaluation

The environment used to evaluate the detection capa-
bilities of the technical defences (listed in Table 7), against
each each of the semantic attacks (listed in Table 5), was
presented in the form of a virtual machine running a Win-
dows 10 operating system with the latest security updates.
For each browser installation, the Internet security web
plugins for each specific anti-virus (where applicable) were
installed. The default Windows 10, browser, e-mail, anti-
virus and platform configuration settings were applied for
all testing. Morover, the Windows firewall was left on, but
in some cases, Windows Defender was disabled by other
anti-virus products.

Technical defence testing functioned by completing the
necessary steps required to expose the user and system

15

Figure 13: Facebook phishing message and URL leading to a fake Facebook charity community page with malicious image link masquerading
as a Facebook video post

to an attack’s deception vectors and payload. For exam-
ple, in the case of attack 1.1 (email spear phishing) and
1.2 (Google drive file masquerading), the target e-mail ac-
count was accessed on the respective email provider (in
this case Gmail), the e-mail read (if not sent to the spam
folder) and the URL clicked on. On clicking the link, the
Google Drive website would be loaded, providing a view
of the file in the Google Drive share. Assuming the file
was available to view, the file was downloaded and then
opened on the system. If the file was allowed to execute,
an attack landing page would open via a browser.

For this experiment, we have selected technical de-
fences which are very likely to be used by both personal
users and enterprise organisations on their computer sys-
tems. In Table 7, each is evaluated according to the func-
tional capabilities for detecting semantic attacks. Whilst
email and browser platforms tend to o↵er anti-phishing,
URL filtering and anti-malware defence, they do not di-
rectly employ heuristic scanning as part of this function-
ality, which as shown, is exclusively provided by the anti-
virus software that we have evaluated. This means that
in practice, most email providers rely on signature-based
attack recognition for email by query through registered
attack databases. For a number of the anti-virus products,
installation of their full-product suite included browser se-
curity add-ons specifically designed for detection of web-
site and email phishing threats and deception-based at-
tacks. Amongst the anti-virus products, Norton, Sophos,
Avast and Kaspesrky included and installed browser secu-
rity add-on software as part of their security suite.

Outside of the technical defences evaluated on the Win-
dows 10 laboratory test bed, the nature of the empirical
experiment environment included inherently any technical
defences each of the participant reported using on their
personal systems. Whilst this increased the breadth of

technical defences exposed to the semantic attacks beyond
those tested specifically in our tested, the experiment re-
sults demonstrated that participants’ own technical de-
fences played e↵ectively no part in their ability to detect
deception-based threats (see section 5.3.2). In Table 6
the following technical defences were reported by to be
installed and used on a number of participants’ platforms.

Technical defence Type

Malwarebytes AV
McAfee AntiVirus Plus AV
IBM Trusteer Endpoint fraud detection
BitDefender AV
Zenmate VPN VPN
PIA VPN
Adblock Browser add-on
Symantec Endpoint Protection AV
Norton Internet Security AV
Windows Defender AV
ESET Nod 32 AV
Windows Defender AV
Sophos Endpoint Protection AV
AVG AntiVirus AV
Avast AntiVirus AV

Table 6: Participant HaaSS sensors’ on device technical defence plat-
forms

5.3. Case study: Crowd-sourcing HaaSS

In this case study, we have integrated participants and
their personal systems directly into Cogni-Sense. Here, we
use the concept of crowd-sourcing HaaSS sensor detection
to utilise attack report telemetry for semantic attack de-
tection. Under this crowd-sourcing scenario, HaaSS sensor

16

Figure 14: Spear USB attacks (Facebook, Instagram and Blackhat
participant profiles)

Figure 15: PDF File masquerading

capabilities can be representative of multiple HaaSS plat-
form structures and deployments, such as HaaSS sensors
who are personal computer users subscribed to a public
HaaSS system, within a business setting (which would in-
clude general business users and security operations users),
or even paid human intelligence task workers (HITs) [28,
29] that have been e↵ectively integrated within a hybrid
human/machine technical security system [30, 31], draw-
ing from a pool of user profiles qualifying as HaaSS sensors.
In the case of the latter, it is reasonable to assume that the
highest performing HaaSS sensors, as proven by their track
record and detection performance, would likely command
a higher fee. In all cases, a key requirement is for HaaSS
platform integration directly into di↵erent users’ computer
devices, which in the era of Internet of Things and Bring-
Your-Own-Device (BYOD) within working environments
means that more often than not these computer devices
are the users’ own.

5.3.1. Empirical experiment environment

We have developed the experiment environment in ad-
herence with the five design principles for user studies in
security and privacy proposed in [32]. All participants
were assigned (i) a primary task of reporting suspected se-
mantic attacks using the Cogni-Sense software; (ii) where
the semantic attacks introduce a realistic risk by exposing
users to real-world deception vectors on their own, per-
sonal computer systems, where similar real attacks could
be received by the participant before, during or after the

experiment; (iii) the participants were not primed to the
nature or format of the semantic attacks and how, or even
if, they will be received to prevent detection bias; (iv)
adding element of double-blinding as the researchers did
not know when participants would be exposed to the emu-
lated experiment attacks or whether their systems security
would block the attacks from reaching the participants and
(v) ensuring the terminology and dissemination of the ex-
periment in relation to the delivery method of the semantic
attack threat, security and privacy was consistent in order
to prevent bias in the participants behaviour and overall
reported results.

As the experiment HaaSS sensor report interface Cogni-
Sense app is installed directly on personal computer de-
vices, the experimental environment was primarily pre-
sented in the form of the participant’s own system. How-
ever, for the HaaSS reporting interface in Cogni-Sense,
a HaaSS sensor app was developed for Windows operat-
ing systems, thus, recruitment was limited to the partici-
pants who had a Windows operating system (Windows 7,
8 or 10) installed on their primary computer device. Con-
sequently, this also required participant devices to be a
desktop PC or laptop.

The goal for participants was to detect and report any
suspected attacks without falling victim to them, by using
the Cogni-Sense app HaaSS report interface. They were
advised to use the application to send a report whenever
they detected a suspected attack. As part of the recruit-
ment process, the participants were required to complete
a questionnaire, which was used to collect HaaSS features.
Each participant was assigned a HaaSS number and re-
porting user ID to match reports to corresponding HaaSS
sensors in the experiment and received a video guide on
how to use the reporting tool. During the experiment,
if any participant was exploited by one of the semantic
attacks, they were either directed to a second attack, as
shown in Table 5 or redirected to an attack landing page
where the participant was required to enter their experi-
ment ID and name. For both cases, should participants fail
to report an attack or submit their details after exploita-
tion, this information would still be available for o✏ine
analysis via the activity collection process.

In total, 26 HaaSS sensors were recruited by inviting
participants to take part in the experiment with the incen-
tive of a £50 ($67) participation voucher1 given to each
participant at the end of the experiment’s six week pe-
riod. There was no competition element to receiving the
voucher. All participants would receive a voucher regard-
less how much they participated in the experiment (with
the exception of those participants which decided to drop

1With respect in particular to beneficence, the participants
were compensated from their involvement in the experiment. The
costs/risks were very low: participants were fully informed of their
task and no subterfuge was detected during the experiment, as they
were advised they would receive the participation voucher irrespec-
tive of performance. Furthermore, no personal information was col-
lected.

17

ID Ref Security Platform Type
Phish
detect

Web
Rating

URL
block

Heuristic
scanning

On access
malware

E1 [33] Yahoo Mail Email 3 7 3 7 3
E2 [34] Gmail Email 3 7 3 7 3
E3 [35] Outlook Email 3 7 3 7 3
E4 [36] ProtonMail Email 3 7 3 7 3
E5 [37] Yandex Email 3 7 3 7 3
E6 [38] GMX Email 3 7 3 7 3
E7 [39] Mail.com Email 3 7 3 7 3
B1 [40] Firefox Browser 3 3 3 7 3
B2 [41] Chrome Browser 3 3 3 7 3
B3 [42] Opera Browser 3 3 3 7 3
B4 [43] Commodo Dragon Browser 3 3 3 7 3
B5 [44] Avast Safezone Browser 3 3 3 7 3
B6 [45] Microsoft Edge Browser 3 3 3 7 3
B7 [46] Safari Browser 3 3 3 7 3
A1 [47] Commodo Cloud AntiVirus 3 7 3 3 3
A2 [48] AVG AntiVirus AntiVirus 3 7 3 3 3
A3 [49] Avast AntiVirus AntiVirus 3 7 3 7 3
A4 [50] Windows Defender AntiVirus 3 7 3 3 3
A5 [51] Norton Security AntiVirus 3 3 3 3 3
A6 [52] Kaspersky IS2017 AntiVirus 3 3 3 3 3
A7 [53] Sophos Intercept X AntiVirus 3 3 3 3 3
P1 [54] Facebook Web platform 3 7 3 7 7
P2 [55] GoogleDrive Web platform 3 7 7 7 3
P3 [56] Windows10 OS 7 7 7 7 7

Table 7: Technical defences tested against semantic attacks in experiment case study

out of the experiment). The participants consisted of a
mixture of students, lecturers, working IT professionals
(all originating from a range of disciplines) and the wider
general public. We have recruited a demographic that
varied in terms of computer literacy and computer secu-
rity awareness, without specifically organising participants
based on their individual skills. For example, 38% of the
participants were female, the average age was 28, and 40-
50% participants had no educational background in com-
puter science or information security. Furthermore, inde-
pendently of formal training or expertise, analysis of par-
ticipants’ reported computer literacy and security aware-
ness showed the sample is fairly evenly distributed across
the self-e�cacy scale (on a scale of 0 to 100, 0=Novice
and 100=Expert), reporting a standard deviation of 18
and variation of 313 and a standard deviation of 24 and
variance of 576, respectively. Therefore, whilst the total
number of participants remains relatively small, the sam-
ple is shown to be suitably diverse to represent most types
of computer user (or equivalently, HaaSS sensor), which
allows for greater generalisation of experiment results.

In a HaaSS system, all employees in an organisation or
the general public (e.g., from the Internet) are viable and
legitimate HaaSS sensors. So, irrespective of whether a
participant sample consists of solely of computer experts,
novices or a mixture between the two (which is the case
with this experiment), it is the application of the H score
that distinguishes between sensors, by providing a met-
ric of their expected detection e�cacy based on features
which have shown to generalise across a wide demographic
[5]. With this in mind, it is preferable to be agnostic of
the HaaSS sensor from a demographic perspective, instead
relying on the H score to provide a unique probability of
detection e�cacy, which can be dynamic based on time
and degree of training, rather than profiling a sensor in-

dividually on attributes which are unethical, discriminate
(age, gender) or di�cult to measure consistently (personal-
ity, emotional state); which we have shown to be of limited
value and impractical in a technical system [5].

5.3.2. Experiment results

In Tables 8 and 9, the HaaSS sensor participants and
technical defences detection results for the experment are
shown, respectively.

General observations: Exposure to the experiment
attacks was quite varied across HaaSS sensors. Most HaaSS
sensors were not exposed to a majority of the attacks, with
at least three HaaSS sensors only being exposed to one
attack set. However, exposure was also dependent of at-
tack detection e�cacy. For example, a HaaSS sensor with
perfect detection performance would only have ever been
exposed to five of the eleven attacks in total. For Facebook
attacks (2.1, 2.2, 4.1 and 4.2), a total of 8 out of 26 HaaSS
sensors did not have Facebook accounts or had prevented
their profiles from being searchable, meaning at least eight
HaaSS sensors would definitely not have been exposed to
these semantic attacks.

In total, 17 out of 26 (65%) HaaSS sensors detected
at least one semantic attack, with the HaaSS sensor base
in the experiment detecting all semantic attacks across all
platforms; 2.2 (Facebook video media masquerading) was
the only semantic attack not reported by a HaaSS sensor.
By comparison, only 3 out of 24 (13 %) technical defences
detected a semantic attack in the experiment and these
detections were specifically limited to phishing emails only;
all of which only identified one of the phishing emails each.
Therefore, all other semantics on di↵erent platforms went
undetected by the technical defences.

In terms of individual attack detection, the HaaSS sen-
sors did not find any specific attack very easy to detect.

18

HaaSS sensors
A H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26
1.1 .49 .72 .54 .55 - .59 7 .50 - - .70 .59 .48 - .53 - - .33 .46 - - .46 .54 .70 .79 .66
1.2 - .66 .53 - - - 3 .26 - - - - .34 - .18 - - .44 - - - - .17 - .71 -
2.1A - - - - - .60 3 - - - .58 - - - .48 - - - - .49 .30 - - - - -
2.1B .51 - - - - - 3 .51 - - .58 .43 - - .48 - - .32 - .49 - - - - - -
2.2 .51 - - - - - - - - - - - - - .48 - - .32 - - - - - - - -
3.1 - - .54 .55 - .60 7 .63 - .51 .70 .59 - .56 .56 .46 .49 .33 .46 - - - .54 .70 - .66
3.2 - - - - - - .62 - - .49 - - - .48 - - .26 .44 .46 - - - - .49 - .67
4.1 - - - .63 - .56 - - - .53 .72 .43 - - - - - - - .49 - - - - - -
4.2 - - - - - - - - - .56 - - - - - - - - - - - - - - - -
5.1 - .67 - .61 7 .63 7 .39 .35 - .65 .52 - - .49 - - .45 .47 - .30 .37 .66 .44 - .68
5.2 - - - - 7 - 3 - .35 - - - - - - - - - .47 - .57 - .68 .72 - .64

Table 8: HaaSS sensor attack detection results. The value in each cell refers to the H score. Note that the HaaSS sensor number shown here
is di↵erent to the HaaSS sensor ID assigned to participants during the experiment, as the IDs in Cogni-Sense were automatically generated
by a database and not contiguous. Green indicates detection and report, orange indicates no detection or exploitation, red indication no
detection and subsequent exploitation.

Technical defences
A E1 E2 E3 E4 E5 E6 E7 B1 B2 B3 B4 B5 B6 B7 A1 A2 A3 A4 A5 A6 A7 P1 P2 P3
1.1 7 7 3 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 - - 7
1.2 - - - - - - - 3 7 7 7 7 7 7 3 7 7 7 7 7 7 - 7 3
2.1A - - - - - - - 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 - -
2.1B - - - - - - - 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 - 7
2.2 - - - - - - - 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 - 7
3.1 7 7 3 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 - - 7
3.2 - - - - - - - 7 7 7 7 7 7 7 7 7 7 7 7 7 7 - - 7
4.1 - - - - - - - 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 - -
4.2 - - - - - - - 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 - -
5.1 - - - - - - - - - - - - - - 7 7 7 7 7 7 7 - - 7
5.2 - - - - - - - - - - - - - - 3 7 7 7 7 7 7 - - 7

Table 9: Email provider attack detection results, green indicates detection, orange indicates no detection and or deception prevention, but
default behaviour that can help to mitigate payload execution, red indicates no detection and no prevention of deception and execution
payload.

For attacks 3.1 (Amazon phishing email) and 4.1 (Face-
book phishing message), there was an equal number of
HaaSS reports to HaaSS attack exploitation, which was
shown to be the highest performance for the HaaSS sensors
in the experiment. Nonetheless, attack 1.1 (spear phish-
ing email), was found to be a challenging attack to detect
for the HaaSS sensors and in this case was specifically tai-
lored to the HaaSS sensor. The USB spear phishing attack
5.1 also proved equally challenging, with both attacks 1.1
and 5.1 exploiting at least 35% and 38% of HaaSS sen-
sors, respectively. For HaaSS sensors exploited by attack
1.1, 67% were also exploited by attack 1.2 (Google Drive
file masquerading), and for attack 5.1, 60% were also ex-
ploited by 5.2 (PDF file masquerading). The most di�cult
attack in the experiment for HaaSS sensors appeared to be
the Google Drive PDF file masquerading, whereby 88% of
HaaSS sensors exposed to the attack were deceived into
downloading the fake file.

For the spear phishing e-mail attack, the H score was
the least accurate, predicting high probabilities of detec-
tion e�cacy for specific HaaSS sensors. However, it is
worth highlighting the complexity of these two semantic
attacks in particular, compared to the rest of the attacks
deployed in the case study. The spear phishing attack
was particularly well-crafted, with very little indication
of the signs the the e-mail was illegitimate. For exam-
ple, the GoogleDrive URL is in fact legitimate, and the e-

mail communication appears at first glance quite credible
as the domain name, matches correctly the email sender,
which appears to originate from a company called “In-
ame”, whereby the company is in reality completely ficti-
tious. A brief online investigation identifies “@iname.com”
as a free email domain provided byMail.com email provider
and the company has no public website listed or details
available by search engine. However, the detailed target
information within the email, good grammar, sincerity and
punctuality of the message combine to make the e-mail ap-
pear convincing and authentic.

For the spear USB attack, the device was posted di-
rectly to HaaSS sensors’ home addresses, labelled profes-
sionally with logos from platforms and companies based
on online profiles they associated most a�nity (and us-
age) to during the participant survey recruitment. The
HaaSS sensors needed only to insert the USB into any of
their systems for the deception to have been successful,
with no technical defence being capable of preventing this
physical action from being executed; other than that of the
HaaSS sensors themselves. In a real world scenario, it is
quite possible that the USB device would contain zero-day
malware, which may have compromised a users system im-
mediately, irrespective of whether they used a Windows,
Mac or Linux operating system; a malware designed for
these platforms could easily have been planted on the de-
vice. On the other hand, for this attack in particular, it is

19

Figure 16: HaaSS sensor report for spear USB through Cogni-Sense
app

also possible that participant HaaSS sensors did not expect
to be exposed to, or even expect to report types of seman-
tic attacks that manifest in cyber-physical form (which is
a common form of distribution for semantic attacks [4])

Nevertheless, 23% of HaaSS sensors detected attack
5.1 and generated semantic attack reports for the spear
USB attack deception physical space, which demonstrates
deception-based attack detection that simply would not
have been possible for a technical defence system. One
such report is shown in Figure 16, where a picture was
taken of the USB and reported via the Cogni-Sense app.
In this case, the HaaSS sensor titled the image “USB”,
which allowed for the app to determine their frequency and
duration of both USB and removable media through the
monitoring functionality. If the title of image was di↵erent,
the frequency and duration measurements of this report
would likely be inaccurate, which would result in a poten-
tially detrimental H score. Thus,further development of
Cogni-Sense for coping with physical user-interface decep-
tion reports is warranted for computing accurately the H
score for such attacks more e�ciently in the future. Re-
gardless, in the absence of a reliable H score, Cogni-Sense
continues provides a facility for reporting semantic attacks
in physical space.

Performance of the H score: The HaaSS scores
generated exhibited a low standard deviation of 0.07 and

a sample mean of 0.56, with the most confident correct
H score only reporting a 71% detection probability as the
highest prediction result. Consequently, no reports quali-
fied for automatic H score report classification threshold
and therefore all reports were sent for manual classification
in the semantic attack sandbox. The lower H score confi-
dence may be explained by a number of reasons. Firstly,
HaaSS sensors auditable (i.e., activity) features were only
collected on one device and therefore a large proportion
of their platform usage may not have been seen by the
Cogni-Sense app. Secondly, the recency of HaaSS sen-
sor computer security training records within the HaaSS
feature database on Cogni-Sense automatically decreased
over time, unless it was updated by HaaSS sensors when
they reported receiving training.

Table 10 shows the model’s performance using the de-
fault and optimal classification thresholds identified in the
experiment. We did not include HaaSS sensor reports or
exploitation records for which it was not possible to gen-
erate a H score. HaaSS sensors who were not exploited
by attacks by performing mitigating actions (orange box
in Table 8), but who also failed to report them, were also
not included. They were deemed neither exploited or as
having “detected” the attack by failing to report it. It was
not possible to generate H scores for HaaSS sensors’ H5
and H7 exploitation records because their database files
used to generate the frequency and duration features via
the Cogni-Sense app were deleted by the participants at
the end of the experiment and therefore not supplied for
analysis.

The optimal H score classification threshold was re-
ported at the probability cut-o↵ value of 52% for pre-
dicting HaaSS sensors attack reporting and exploitation,
which demonstrated a 12% increase in prediction accuracy
over the null classifier. In the case of the default classifi-
cation threshold of 50%, the H score was only 7% more
accurate than the null classifier. Overall, the H scores
were consistent with the experimental results reported by
the susceptibility model testing in [5], reporting an average
prediction accuracy of 74% compared to 71%, respectively.
Notably, this agreement in prediction accuracy illustrates
the H scores ability to generalise beyond initial laboratory
conditions to those of empirical, real-world application,
whereby the performance of the H score for a sample size
of 26 participants was consistent with that reported for the
significantly greater sample size of 365 participants used
to develop the machine learning model utilised.

Arguably, the most important validation of theH score
performance (and its viability as a robust measure of sen-
sor reliability) is observed by contrasting H scores with
corresponding HaaSS sensor detection results. In Figure
17, a box-plot of the H scores in the case study shows that
as the probability of detection e�cacy increased (as pre-
dicted by the H score), semantic attack detection e�cacy
was indeed significantly higher.

HaaSS detection of further semantic attacks: A
total of 40 extra HaaSS sensor reports were received for

20

Figure 17: Overal distribution of HaaSS sensor H scores in experi-
ment case study

Class. Threshold Accuracy TP TN FP FN Precision
.50 (default) .69 .32 .35 .25 .06 .57
.52 (optimal) .74 .32 .42 .20 .06 .62
Null classifier .62 0 .62 0 .62 0

Table 10: H score detection e�cacy classification performance for
HaaSS sensor reports

suspected attacks that did not originate from the emu-
lated attacks. 26 of these were correctly detected seman-
tic attacks and 23 were incorrectly detected. Interestingly,
multiple reports of typosquatting attacks were received,
further validating the HaaSS concept for detecting and re-
porting an even wider range of semantic attacks. In Figure
18, an example typosquatting report is shown from HaaSS
sensor 11, with a H score of 67% (who also reported the
highest detection rate overall in the experiment).

Expert reviewer sandbox classification (Classi-
fication): Within the experiment, for each HaaSS sensor
report made by participants, the computed H score was
subject to automatic classification if the probability value
hit the default defined upper (>.85) or lower (<.1) thresh-
old in Cogni-Sense. However, unlike in the lab-based study
in [24], where two HaaSS sensor reports for attacks 1.1 and
3.1 were automatically classified based on a 92% H score,
during the experiment no reports qualified for automatic
classification and therefore all were sent to the semantic
attack sandbox for manual classification.

To evaluate the practicality of the Cogni-Sense seman-
tic attack sandbox, we have invited an expert reviewer to
manually classify each of the HaaSS reports. The expert
reviewer recruited was a lead security operations centre
engineer, with over ten years experience on security event
and information monitoring platforms. Here the aim is to
evaluate experimentally whether information supplied by
the Cogni-Sense system and HaaSS sensors adequately in-
formed accurate classification by report reviewers. From
the results, it is clear that the expert reviewer classified
each of the HaaSS reports with a high degree of accuracy
and excellent precision to distinguish between HaaSS re-

Figure 18: HaaSS sensor report of typosquatting website received
during the experiment

Expert reviewer role Accuracy Precision FP FN
Security operations centre engineer .87 .94 .04 .09

Table 11: Expert reviewer semantic attack sandbox report classifi-
cation performance

ports that were credible semantic attacks. According to
the performance indicators, the semantic attack sandbox
has proven its utility as an informative tool for manually
classifying HaaSS reports in order to transform HaaSS at-
tack detection into kinetic defence against the reported
threats. In the case of the Cogni-Sense prototype, each
correct detection would have resulted in an e-mail attack
alert of the HaaSS report to HaaSS sensors. In a produc-
tion system, the security enforcement module (SEM) could
be expanded to URL and domain blacklisting and blocking
specific file names using existing organisational security
platforms (e.g., web proxy, anti-virus, firewall etc.).

HaaSS Score remodelling: During the course of
the experiment, the Cogni-Sense prototype collected new
HaaSS feature data as a result of exploitation records and
report classification received via the semantic attack sand-
box. In total, only 136 new observations were collected,
which had no significant change in the HaaSS sensor de-
tection rate and therefore H score remodelling was not
carried out. In general, the data arrival frequency from
HaaSS sensor reports is relatively low compared to that

21

of network alerts from an IDS, but is likely to gradually
increase as a HaaSS sensor-base expands. With this in
mind, unlike in streaming prediction models, the H score
random forest rule-set will remain valid until a significant
change in the detection distribution, or until a significant
amount of data has been collected with the introduction of
new predictor features; which would warrant remodelling.

Conclusion from case study results: The HaaSS
sensors comfortably outperformed all technical defences
for the attacks evaluated in the experiment. Apart from
Outlook and Yandex email providers detecting attack 1.1
and 3.1 respectively, all other technical defences failed to
report that a deception-attempt was detected or imple-
ment measures to prevent them from executing. An ex-
ception is Comodo Antivirus, which failed to detect the
PDF file masquerading on the spear USB as an attack, but
did run the file through a virtual machine sandbox as part
of default behaviour, and as a result prevented execution.
The Avast and AVG anti-virus products also scanned the
PDF file masquerading executable, presumably because it
was an unsigned executable and this is again default prod-
uct configuration behaviour conducted in most modern-
day anti-virus products. In both cases scanning found
the file to be legitimate and therefore allowed the file to
run (which is also arguably second-order deception from a
user’s perspective). The file itself should be deemed as ma-
licious code, as it contained a system command to directly
open a browser to a malicious URL. More importantly,
and as expected, the cosmetic deception vector of the PDF
file masquerading attack was completely undetectable and
could not be prevented by the host system and or any anti-
virus product tested in the experiment. For attacks 2.1A,
4.1 and 4.2, none of the technical defences identified any
malicious behaviour or blocked any of the attacks. At no
point did any HaaSS sensor report that their personal sys-
tem’s resident technical defences (e.g., anti-virus, browser
security, firewalls etc.) either detected or improved their
ability to identify any of the semantic attacks that were
deployed in the experiment. On the contrary, HaaSS re-
ports generally consisted of detection observation (in the
reporting information) that described detection based on
HaaSS sensor expertise and knowledge, rather than guid-
ance or support from any available security software they
may have had access to. The inadequacy of participants
technical defences is further exemplified by the simple fact
that many continued to be successful exploited by attack
deception vectors, regardless of the security software in-
stalled on their device platform.

Overall, the HaaSS sensors were more e↵ective at de-
tecting all threats than the technical defences exposed to
the semantic attacks; without prior knowledge of the at-
tacks themselves or any specific semantic attack training
provided prior to the experiment. Crucially, the detection
performance of the HaaSS sensor base compared to tech-
nical defences has significant implications for implement-
ing defence measures to improve semantic attack threat
detection capability. For instance, in an organisational

context, the 26 participants acting as employees within a
HaaSS sensor role would have exhibited a missed detec-
tion rate below 10% for the semantic attacks evaluated,
compared to a missed detection rate of 81% if only techni-
cal security systems had been used. These results strongly
suggest that by involving the user within a security plat-
form through active cyber threat detection and reporting,
where technical defences struggle to provide adequate pro-
tection against deception-based threats, the HaaSS con-
cept is shown to be both a viable and superior method for
detecting semantic attacks.

6. Limitations

By its nature, the empirical experiment carried out has
some limitations. It is possible that Cogni-Sense did not
capture the full footprint of a HaaSS sensor’s activity, be-
cause the the activity collection tool was not installed on
other platforms that the participants were using in paral-
lel, such as smartphones and work devices. By including
all participant devices, this would increase the accuracy
of the activity analysis and would have an impact on the
H scores computed for each attack report. However, this
was highly impractical for the experiment due to ethics
considerations and the substantial cross-platform develop-
ment required. Furthermore, the activity learning period
was naturally limited in time (here, one month), which
may not have been a representative or su�cient time pe-
riod for feature collection and learning for all participants.
In principle, the longer the learning period, the more con-
fident the H scores would be. Regarding the prototype
HaaSS platform Cogni-Sense, implementation limitations
were identified by the di�culty in reporting attack 5.1,
which initiates a semantic attack distributed through hard-
ware with software interaction [4]. For HaaSS sensors that
detected the USB as semantic attack in the physical space,
this required HaaSS sensors to take an actual picture of the
USB and then send this through image to their device to
intiate a report. Therefore, for future HaaSS system plat-
forms it would be essential to allow for capturing reports
more naturally in physical space through use of mobile
video and image capture capabilities.

In terms of the experiment’s relatively small sample
size (26 participants), it is quite possible that had the sam-
ple been larger the corresponding H score’s accuracy could
have been higher or indeed lower. However, generally, it
is unlikely that a change in H score accuracy based on
an increased sample size would unduly a↵ect the utility
of the H score as a core component of the HaaSS frame-
work. In fact, this is generally expected because H score
prediction performance (e.g., accuracy) and bias will dy-
namically change between organisations; especially over
time. For example, the distribution of the H score will
deviate as more reports are received and classified by a
HaaSS platform. As a result, the H score will gradu-
ally adapt to the bias of di↵erent organisations’ incumbent

22

user-base and their specific user profiles and HaaSS report-
ing telemetry (e.g., types of attacks seen). Therefore, a H
Score modelled only on phishing attacks is likely to be less
accurate when predicting HaaSS sensor detection e�cacy
for a file masquerading deception vector. In this experi-
ment, we have shown that a generalised model can work
su�ciently well for a participant sample (representing the
size of a small company) from which it has not been orig-
inally trained; even for attacks is has not previously seen.
In practice, an organisation is likely to begin with a base
template model for the H score (e.g., the model developed
in [5]), which is replaced gradually over time by data from
internal HaaSS sensors (i.e., user-base).

7. Future work

Here, we have made progress towards the first technical
framework in order to enable the design and implementa-
tion of HaaSS platforms, demonstrating the feasibility of
the concept as a defence against semantic attacks. Whilst
we have evaluated the concept of HaaSS for conventional
computer systems, in the space-constrained interfaces of
smartphones and embedded systems, the user is a↵orded
a lot less information to spot suspicious activity. For in-
stance, it is di�cult to see the full address of a website,
and SMS messages in modern smartphones are automat-
ically grouped within one’s existing conversations based
on the phone number of the sender (even if this has been
spoofed). As a result, Cogni-Sense HaaSS sensor report-
ing mechanisms should be expanded to include a range of
system and device interfaces; especially as future semantic
attacks will be designed to exploit IoT devices that inter-
face with users through both physical and cyber means.
By providing a richer facility for users to report suspected
threats across in IoT space, Cogni-Sense can be expanded
to address an even wider range of cyber-physical seman-
tic attack threats that are expected to emerge in the near
future.

The trustworthiness of HaaSS reporting information
has been studied in relation to the reliability of human sen-
sors of semantic attacks in the context of this work. How-
ever, malicious modification, prevention or delay of HaaSS
reports can also be the result of cyber security breaches af-
fecting the mobile devices and network infrastructure used
to deliver HaaSS reports. Examples of these can be denial
of service attacks, where the timely delivery of reports is
important, and location spoofing attacks, where the accu-
racy of the location of an incident is important. Future
work should aim to introduce the cyber-trustworthiness
aspect in HaaSS and propose a mechanism for scoring re-
ports in terms of their cyber-trustworthiness based on fea-
tures of the HaaSS reporting device. We have previously
conducted preliminary research for a mobile device’s “cy-
ber trustworthiness” as a HaaS reporting device for police
incidents in [57]. Combining both approaches explores the
concept of a unified measure of trust and reliability for

HaaSS reports based on both the reliability of the HaaSS
user and cyber-trustworthiness of their system.

Although our primary aim in this work has been to
evaluate the applicability of the HaaSS concept for de-
tecting and mitigating semantic attacks, more generally,
HaaSS has practical uses beyond semantic attacks, such
as in the detection of physical threats and adverse physi-
cal conditions [58, 59, 13]. It would be interesting to in-
vestigate the applicability of the paradigm for detection
of other cyber threats, such as denial of service, reporting
service interruption and degradation to determine user ex-
perience in near real-time, or even further exploring the
concept of the H score in cyber insurance.

Finally, a direction for research may be to explore whether
cyber security can benefit from “super-recognisers” in the
same way policing does. These are human sensors em-
ployed by the police 2 to rapidly identify suspects through
vast volumes of surveillance footage. In the context of our
experimentation, this would mean identifying individuals
in the population who would detect not only six out of six
(e.g., H11 in Table 8), but perhaps hundreds of deception
attempts without false positives or false negatives.

8. Conclusion

As building lasting and practical defenses against se-
mantic attacks is a perpetual challenge, for which techni-
cal defences are simply not equipped to solve on their own,
we have proposed a prototype for utilising the Human-as-
a-Security-Sensor paradigm for detecting and mitigating
semantic social engineering attacks. The framework pro-
posed provides researchers and developers with a blueprint
for the design and development of a technical HaaSS sys-
tem. We have put the HaaSS paradigm to the test with
an empirical case study across a range of semantic social
engineering attacks, and compared against technical plat-
forms that claim to provide defence against such attacks,
as well as technical defence systems designed specifically to
protect against them. In this respect, this first evaluation
was successful, as the users in a HaaSS role performed con-
siderably better than all technical defence systems evalu-
ated, and the Cogni-Sense application developed for lever-
aging this ability of users proved fit for the purpose. We
also demonstrated experimentally that the application of
HaaSS under real-world conditions is indeed viable and
practically useful means to dynamically detect semantic
attacks.

By involving users as human sensors at the heart of a
technical defence platform, we have challenged the concept
that users are the weakest link against semantic attacks,
instead, empowering them to become one of its strongest
links for detecting deception-based threats. It is commonly
emphasised that a single user being deceived by one such

2The term “super-recogniser” has been coined by the Metropoli-
tan Police Service in the United Kingdom [60]

23

attack is su�cient to compromise an organisation’s secu-
rity. Here, we have flipped this notion. If a single user
detects correctly an attack and can communicate it inter-
nally, then the organisation has successfully detected the
attack.

References

[1] K. Mitnick and W. L. Simon. The art of deception: controlling
the human element of security. Wiley, 2001.

[2] B. Schneier. Secrets and lies: digital security in a networked
world. 2011.

[3] C. Hadnagy. Unmasking the social engineer: The human ele-
ment of security. John Wiley and Sons, 2014.

[4] R. Heartfield and G. Loukas. A taxonomy of attacks and a
survey of defence mechanisms for semantic social engineering
attacks. ACM Computing Surveys, 48(3), 2016.

[5] R. Heartfield, G. Loukas, and D. Gan. You are probably not the
weakest link: Towards practical prediction of susceptibility to
semantic social engineering attacks. IEEE Access, 4:6910–6928,
2016.

[6] M. A. Sasse, S. Brosto↵, and D. Weirich. Transforming the
‘weakest link’ - a human/computer interaction approach to us-
able and e↵ective security. BT technology journal, 19(3):122–
131, 2001.

[7] M. A. Sasse, C. C. Palmer, M. Jakobsson, S. Consolvo, R. Wash,
and L. J. Camp. Helping you protect you. IEEE Security and
Privacy, 12(1):39–42, 2014.

[8] University of Oxford. Information security - report an incident,
2016. URL https://www.infosec.ox.ac.uk/report-incident.

[9] BBC News. Fake news: Facebook rolls out new tools to
tackle false stories, 2016. URL http://www.bbc.co.uk/news/

world-us-canada-38336212.
[10] PhishMe. Phishme reporter, 2017. URL https://phishme.com/

product-services/reporter.
[11] Wombat Security. Wombat security announces new

feature to reinforce secure employee behavior against
phishing, 2016. URL https://www.wombatsecurity.com/

press-releases/phishalarm-email-add-in.
[12] Sophos. Sophos phish threat, 2017. URL https://www.sophos.

com/products/phish-threat.aspx.
[13] M. Avvenuti, M. G. Cimino, S. Cresci, A. Marchetti, and

M. Tesconi. A framework for detecting unfolding emergencies
using humans as sensors. SpringerPlus, 5(1):1–23, 2016.

[14] Y. Zheng, T. Liu, Y. Wang, Y. Zhu, Y. Liu, and E. Chang.
Diagnosing new york city’s noises with ubiquitous data. In ACM
International Joint Conference on Pervasive and Ubiquitous
Computing, pages 715–725, Sep. 2014.

[15] E.H. Jürrens, A. Bröring, and S. Jirkai. A human sensor web
for water availability monitoring. In OneSpace, 2009.

[16] O. Aulov and M. Halem. Human sensor networks for improved
modeling of natural disasters. Proceedings of the IEEE, 100
(10):2812–2823, 2012.

[17] W. Yuan, D. Guan, E. N. Huh, and S. Lee. Harness human
sensor networks for situational awareness in disaster reliefs: a
survey. IETE Technical Review,, 30(3):240–247, 2013.

[18] D. Wang, M.T. Amin, S. Li, T. Abdelzaher, L. Kaplan, S. Gu,
C. Pan, and H. Liu C.C. Aggarwaland R. Gantiand X. Wang.
Using humans as sensors: an estimation-theoretic perspective.
In Information Processing in Sensor Networks, IPSN-14 Pro-
ceedings of the 13th International Symposium on, pages 35–46.
IEEE, June 2014.

[19] N. Stembert, A. Padmos, S. M. Bargh, S. Choenni, and
F. Jansen. A study of preventing email (spear) phishing by
enabling human intelligence. In Intelligence and Security In-
formatics Conference (EISIC), pages 113–120. IEEE, 2015.

[20] L. Malisa, K. Kostiainen, and S. Capkun. Detecting mobile
application spoofing attacks by leveraging user visual similarity
perception. IACR Cryptology ePrint Archive, 2015.

[21] PhishMe. Phishme triage, 2017. URL https://phishme.com/

product-services/triage/.
[22] PhishTank. Out of the web and into the tank, 2017. URL

https://www.phishtank.com/.
[23] Millersmiles. Millersmiles anti-phishing services, 2017. URL

www.millersmiles.co.uk.
[24] R. Heartfield, G. Loukas, and D. Gan. An eye for decep-

tion: A case study in utilizing the human-as-a-security-sensor
paradigm to detect zero-day semantic social engineering attacks.
In Software Engineering Research, Management and Applica-
tions (SERA 2017), IEEE 15th Conference on. IEEE, June
2017.

[25] M. A. Sasse and M. Smith C. Herley H. Lipford K. Vaniea. De-
bunking security-usability tradeo↵ myths. IEEE Security and
Privacy, 14(5):33–39, 2016.

[26] Birch Grove Software Inc. Activtrak, 2017. URL https://

activtrak.com/.
[27] L. Breiman. Random forests. Machine learning, 45(1):5–32,

2001.
[28] L. Ross, L. Irani, M. Silberman, A. Zaldivar, and B. Tomlinson.

Who are the crowdworkers? shifting demographics in mechan-
ical turk. In CHI’10 extended abstracts on Human factors in
computing systems, pages 2863–2872. ACM, 2010.

[29] M. Marge, S. Banerjee, and A. I. Rudnicky. Using the ama-
zon mechanical turk for transcription of spoken language. In
Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE
International Conference on, pages 5270–5273. IEEE, 2010.

[30] D. W. Barowy, C. Curtsinger, E. D. Berger, and A. McGregor.
Automan: A platform for integrating human-based and digi-
tal computation. Communications of the ACM, 59(6):102–109,
2016.

[31] W. S. Lasecki, C. D. Miller, I. Naim, R. Kushalnagar,
A. Sadilek, D. Gildea, and J. P. Bigham. Scribe: Deep inte-
gration of human and machine intelligence to caption speech in
real time. Communications of the ACM, 60(11), 2017.

[32] K. Krol, J. M. Spring, S. Parkin, and M. A. Sasse. Towards
robust experimental design for user studies in security and pri-
vacy. In Learning from Authoritative Security Experiment Re-
sults (LASER) Workshop, 2016.

[33] Yahoo. Secure your inbox, 2017. URL https://uk.antispam.

yahoo.com/.
[34] Engadget. Google beefs up gmail security to fight phishing at-

tempts, 2017. URL https://www.engadget.com/2017/05/31/

google-gmail-security-fight-phishing/.
[35] Microsoft. O�ce 365 email anti-spam protection, 2017.

URL https://support.office.com/en-us/article/

Office-365-email-anti-spam-protection-6a601501-a6a8-4559-b2e7-56b59c96a586.
[36] ProtonMail. E↵ective spam filtering with encrypted

email, 2017. URL https://protonmail.com/blog/

encrypted-email-spam-filtering/.
[37] ESET. Eset anti-phishing, 2017. URL https://www.eset.com/

us/anti-phishing/.
[38] GMX. Spam filter: The cleanest inbox, 2017. URL https:

//www.gmx.com/mail/spam-filter/.
[39] Mail. Stay safe from phishing: Your worry free

email, 2017. URL https://www.mail.com/mail/spam-filter/

499562-stay-safe-phishing-email.html.
[40] Firefox. How does phishing and malware protection

work, 2017. URL https://support.mozilla.org/en-US/kb/

how-does-phishing-and-malware-protection-work.
[41] Chrome. Google safe browsing, 2017. URL https://

safebrowsing.google.com/.
[42] Opera. Opera fraud and malware protection, 2017. URL http:

//www.opera.com/help/tutorials/security/fraud/.
[43] Comodo. Dragon internet browser, 2017. URL

https://www.comodo.com/home/browsers-toolbars/browser.

php#tab-features.
[44] Avast. Safezone browser, 2017. URL https://www.avast.com/

f-safezone.
[45] Microsoft. Secucrity enhancements for microsoft edge, 2017.

URL https://docs.microsoft.com/en-us/microsoft-edge/

24

deploy/security-enhancements-microsoft-edge.
[46] Apple. Defending your online privacy and security., 2017. URL

https://www.apple.com/uk/safari/.
[47] Comodo. Comodo cloud antivirus, 2017. URL https://

antivirus.comodo.com/cloud-antivirus.php.
[48] AVG. Avg anti-virus free, 2017. URL http://www.avg.com/

en-gb/free-antivirus-download.
[49] Avast Internet Security. Avast internet security, 2017. URL

https://www.avast.com/en-gb/internet-security.
[50] Microsoft. Windows defender smartscreen, 2017.

URL https://docs.microsoft.com/en-us/windows/

threat-protection/windows-defender-smartscreen/

windows-defender-smartscreen-overview.
[51] Symantec. Norton security review 2017: Top antivirus provider

with fully furnished internet security suites, 2017. URL https:

//fatsecurity.com/review/norton.
[52] Kaspersky. Kaspersky internet security 2017, 2017. URL https:

//www.kaspersky.co.uk/internet-security.
[53] Sophos. Intercept x tech specs, 2017. URL https://www.

sophos.com/en-us/products/intercept-x/tech-specs.aspx.
[54] Facebook. What can i do about phishing?, 2017. URL

https://www.facebook.com/help/166863010078512?helpref=

faq_content.
[55] TipTopSecurity. Is google drive safe to use? how google se-

cures your files online, 2016. URL https://tiptopsecurity.

com/is-google-drive-safe-to-use/.
[56] Microsoft. Mitigate threats by using windows

10 security features, 2017. URL https://docs.

microsoft.com/en-us/windows/threat-protection/

overview-of-threat-mitigations-in-windows-10.
[57] S. S. Rahman, R. Heartfield, W. Oli↵, G. Loukas, and A. Fil-

ippoupolitis. Assessing the cyber-trustworthiness of human-as-
a-sensor reports from mobile devices. In Software Engineering
Research, Management and Applications (SERA 2017), 15th
ACIS International Conference on. IEEE, June 2017.

[58] B. Pan, Y. Zheng, D. Wilkie, and C. Shahabi. Crowd sensing
of tra�c anomalies based on human mobility and social media.
In Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems,
pages 344–353. ACM, 2013.

[59] R. Dave, S. K. Boddhu, M. McCartney, and J. West. Augment-
ing situational awareness for first responders using social media
as a sensor. IFAC Proceedings Volumes, 46(15):133–140, 2013.

[60] David J Robertson, Eilidh Noyes, Andrew J Dowsett, Rob Jenk-
ins, and AMike Burton. Face recognition by metropolitan police
super-recognisers. PloS one, 11(2):e0150036, 2016.

25

