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ABSTRACT 
While the human as a sensor concept has been utilised extensively for the 

detection of threats to safety and security in physical space, especially in 

emergency response and crime reporting, the concept is largely unexplored 

in the area of cyber security. Here, we evaluate the potential of utilising 
users as human sensors for the detection of cyber threats, specifically on 

social media. For this, we have conducted an online test and accompanying 

questionnaire-based survey, which was taken by 4,457 users. The test 
included eight realistic social media scenarios (four attack and four non-

attack) in the form of screenshots, which the participants were asked to 

categorise as “likely attack” or “likely not attack”. We present the overall 
performance of human sensors in our experiment for each exhibit, and also 

apply logistic regression and Random Forest classifiers to evaluate the 

feasibility of predicting that performance based on different characteristics 

of the participants. Such prediction would be useful where accuracy of 
human sensors in detecting and reporting social media security threats is 

important. We identify features that are good predictors of a human sensor’s 

performance and evaluate them in both a theoretical ideal case and two more 
realistic cases, the latter corresponding to limited access to a user’s 

characteristics 

 

Keyword:  —Social media, computer security, semantic attacks, phishing, 
social engineering, human as a sensor. 
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1 INTRODUCTION 

The concept of the human as a sensor has been used extensively and 

successfully for the detection of threats and adverse conditions in physical 
space. Examples include diagnosing a city’s noise pollution (Y. Zheng et al., 

2014), road traffic anomalies (B. Pan et al., 2013) monitoring water 

availability (E. Jurrens et al., 2009), neighborhood watch schemes (T. 

Bennett et al., 2006), detecting unfolding emergencies (M. Avvenuti et al., 
2016) and generally augmenting the situational awareness of first 

responders through social media (S. K. Boddhu et al., 2013). Yet, rather 

surprisingly the concept is very new in relation to detecting and reporting 
threats in cyber space. We are aware of only one very recent example of 

research geared specifically towards phishing attacks (N. Stembert et al, 

2015). Here, we take the first steps towards exploring the applicability of the 
concept more generally by testing the reliability of human users as sensors 

of security threats. Our focus is on threats to social media. We have 

conducted a large-scale online experiment where we have asked 4,457 users 

to distinguish between attacks and non-attacks on different online usage 
scenarios presented to them as visual exhibits. The focus of this paper is the 

analysis of the performance of human users as threat sensors with four 

examples of social media attacks and four examples of legitimate social 
media usage. Also, complementing previous research on predicting whether 

a particular attacker will be successful in their attack (A. Filippoupolitis et 

al., 2014; S. Kapetanakis et al. 2014), here we identify features and models 
for predicting whether a particular user will successfully detect an attack. 

 

 

2 RELATED WORK 

Stembert et al., (2015) have very recently proposed combining a reporting 
function with blocking and warning of suspicious emails and the provision 

of educative tips, so as to harness the intelligence of expert and novice users 

in detecting email phishing attacks in a corporate environment. Initial 
experimental results of their mock-up have been encouraging for the 

applicability of the human as a sensor concept in this context. Here, we 

focus on the detection capability of the users by evaluating the performance 

of a large number of users of different profiles and for a wider range of 
attacks than only phishing emails. That is because before building a system 

that depends extensively on a particular type of sensors (and the human 

sensor is no exception), one needs to be aware of their overall reliability and 
to be able to predict how well they will perform in different conditions (in 

this case, with regards to the profiles of the users and the type and difficulty 

of attacks they are expected to detect and report). 
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Specifically, in relation to social media, it is particularly important to be 
able to tell to what extent users can correctly detect and report deception-

based security threats (R. Heartfield and G. Loukas, 2016). In this respect, 

the related work on user susceptibility to phishing and other semantic social 

engineering attacks is highly relevant. Predicting whether a user will be 
deceived into clicking on a fraudulent link or not has traditionally been 

studied in the realm of behavioural science, where different studies have 

found that higher degrees of normative, affective and continuance 
commitment, obedience to authority and trust (M. Workman, 2008), 

submissiveness (I. M. A. Alseadon, 2014), neurotic behaviour (T. Halevi, 

2013) and conscientiousness (T. Halevi et al., 2015) all correlate with high 
susceptibility to phishing. Also, research by J. G. Mohebzada et al. (2012) 

has reported openness, positive behaviour (e.g., use of positive language) 

and high levels of conversationalist activity as predictors of vulnerability to 

an online social network bot. However, such behavioural features are rarely 
practical if the aim is to predict a user’s ability to detect attacks within a 

technical platform. For instance, how would a system measure 

conscientiousness or submissiveness in real-time, automatically and 
ethically? Similarly, a number of research studies have reported that female 

participants were found to be more susceptible to phishing attacks than male 

participants (T. Halevi et al., 2015; S. Sheng et al, 2010; M. Blythe et al., 
2011; J. Hong et al., 2009), but again this is not a predictor that could be 

used, for instance, in a corporate environment, as it would amount to 

discrimination. Instead, more practical is to know whether users have 

previously received training on social media security or generally on 
security threats, which is consistently seen as a useful predictor of their 

ability to spot them (P. Kumaraguru et al, 2009), albeit to a varying degree. 

 
Here, we utilise the literature to identify a first set of predictors of a user’s 

ability to detect deception-based attacks and using statistical analysis we 

select the most relevant among them for different environments. We extend 

the scope beyond phishing and spear-phishing by including fake apps and 
QRishing, and measure the ability of users to detect them and the ability of 

our statistical models to predict whether they will. As the longer-term aim is 

to incorporate prediction to a technical platform, we are primarily interested 
in predictors that can be considered as practical, in the sense that their value 

can be provided or measured in real-time, automatically and ethically. 

 
 

3 METHDOLOGY 
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FIGURE 1  - GEOGRAPHICAL DISTRIBUTION OF STUDY PARTICIPANTS 

We have conducted a quantitative on-line experiment implemented in the 

on-line survey platform Qualtrics, consisting of a short survey for the 
collection of demographic and platform behaviour data, and an exhibit-

based test. Participants were recruited primarily via popular on-line forums 

and social media communities, such as Reddit, 4CHAN, StumbleUpon, 

Facebook and Twitter, with an online advertisement challenging them to test 

their ability to detect attacks. Figure 1 shows the geographical distribution 

of the participants. 
 

3.1 User Profile Features 

The survey portion of the experiment required participants to answer a 

series of questions related to their age (A), gender (G), security training (S1, 
S2, S3), platform familiarity (FA), frequency (FR), duration of use (DR), 

computer literacy (CL), security awareness (SA) and education (EDU). 

These features are described below: 
 

 Age. Coded in groups as: 18-24(1), 25-34(2), 35-44(3), 45-54(4), 

55-64(5), 65+(6)  

 G. Gender. 

 S1. Formal computer security education (S1), Coded as a binary 

response. In relation to the terminology used by D. Colardyn and J. 

Bjornavold (2004), S1 is “Formal Learning”.  

 S2. Work-based computer security training (S2). Coded as a binary 

response. In relation to the terminology used in D. Colardyn and J. 

Bjornavold (2004), S2 is “Non-formal Learning”. 
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 S3. Self-study computer security training (S3). Coded as a binary 

response. In relation to the terminology used in D. Colardyn and J. 

Bjornavold (2004), S3 is “Informal Learning”. 

 FA. Familiarity with each platform presented in each exhibit, coded 

as: Not very (1), Somewhat (2), Very (3)  

 FR. Frequency of use for each platform presented in the test, coded 

as: Never (1), less than once a month (2), once a month (3), weekly 

(4), daily (5)  

 DR. Duration of use. For each platform category presented in the 
susceptibility test, coded as: None (1), less than 30 mins (2), 30 

mins to 1 hour (3), 1 to 2 hours (4), 2-4 hours (5), 4 hours+ (6)  

 CL. Computer literacy coded on a scale from 0 to 100 and reported 

by the participants themselves.  

 SA. Security awareness coded on a scale from 0 to 100 and reported 

by the participants themselves.  

 EDU. Level of education, coded as: Less than high school (1), high 

school /GED (2), some college (3), Trade/technical/vocational 

training (4), associate degree (5), Bachelor’s degree (6), Master’s 

degree (7), doctoral degree (8). 
 

 

3.1 Exhibits 

The test included four exhibits showing attacks (figures 3, 4, 5 and 6) and 

four exhibits showing normal (non-attack) usage, with an example of these 

shown in figure 7. For the purposes of demonstration, we have added green 

outlines that represent a potentially deceiving visual component of the 
exhibit and red outlines representing visual attack indicators in each attack 

exhibit. These lines were not shown to the participants. The eight attack and 

non-attack exhibits are summarised in table I. 

 
TABLE 1 -  ATTACK (A1-A4) AND NON-ATTACK (NA1-NA4) EXHIBITS INCLUDED IN THE TEST 

Exh. Description 

NA1 FB app download from Googleplay, with application permission requirements presented 

NA2 Tweet with shortened URL leading to legitimate search on search engine Startpage 

NA3 Mistyped URL for FB website, leading to the legitimate Facebook login homepage 

NA4 Sponsored tweet with game advertisement on Twitter app, also displaying download 

A1 Twitter phishing website 

A2 Twitter spear phishing email 

A3 Instagram “Qrishing” post that leads to Steam phishing website 

A4 FB malware app on friend’s timeline; requests account permissions with URL redirect 
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Figure 2 shows the percentage of participants that identified correctly 

whether each exhibit corresponds to an attack or not. This can also be 
considered as a metric of the difficulty of each exhibit. 

 
FIGURE 2 - PERCENTAGE OF PARTICIPANTS THAT IDENTIFIED CORRECTLY WHETHER EACH 

EXHIBIT CORRESPONDS TO A NON-ATTACK (NA1, NA2, NA3, NA4) OR AN ATTACK (A1, A2, A3, 
A4) 

 

Our focus is on achieving prediction of a user’s ability to correctly 

distinguish between attacks and non-attacks. For this, we consider the 

theoretical ideal case, where all features can be utilised (case A), as well as 
two more constrained and more likely future implementations: (case B) as a 

reliability prediction module in a security threat reporting mechanism on a 

social media platform, and (case C) as a mechanism for predicting 

susceptibility to attacks in enterprise environments with extensive 
monitoring of the users. 

 

Case A: Ideal case with all features 
This is the theoretical ideal case, where we predict whether a user will 

correctly detect an attack or non-attack with access to the complete profile 

of a user. 

 
Case B: Report reliability prediction in lightly-monitored social media 

Here, we consider the case where the users of a social media platform are 

encouraged to act as human sensors and report security threats when they 
spot them. The social media platform would want to evaluate the 

trustworthiness of each report based on the human sensor’s predicted ability 
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to correctly detect attacks (true positives) and avoid mislabeling normal 

social media usage as attacks (false positives). The challenge is that only a 
few of the predictors discussed in Section III are practical. Specifically, it is 

assumed that the social media provider collects data only on frequency and 

duration of use, and can additionally request the user to self-report computer 

literacy, security awareness and platform familiarity. The focus here is on 
achieving a balance between true positive and false positive reports. 

 

Case C: Susceptibility prediction in heavily-monitored enterprise 
environment 

 

Here, we consider the case where the users are employees within an 
enterprise environment. Their organisation is interested in estimating the 

likelihood that they would be deceived by an attack, for instance to 

determine whether they should control their usage of social media, display 

warnings, recommend training etc. The organisation can have access to 
more input features than in case B, including their training history, but for 

ethical reasons cannot make use of protected information, such as age and 

gender, which were available in case A. Also, in this context where there is 
no reporting, false positives and true negatives are of lower importance than 

true positives and false negatives. 

 
FIGURE 3  - EXAMPLE OF TWITTER PHISHING WEBSITE (A1) 
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FIGURE 4  - EXAMPLE OF A TWITTER PHISHING EMAIL (A2) 

 
 



 9 

FIGURE 5  - EXAMPLE OF INSTAGRAM QRISHING ATTACK AND STEAM PHISHING WEBSITE (A3) 

 
 

FIGURE 6  - EXAMPLE OF MALICIOUS FACEBOOK APP ATTACK (A4) 
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FIGURE 7  - EXAMPLE OF LEGITIMATE TWITTER APP ADVERTISEMENT (NA4) 

 
 

 

3.2 Prediction Model 

The prediction of whether a user will correctly or incorrectly detect an 

attack (or non-attack) is a binary classification problem. Using R (R. Ihaka 

and R. Gentleman, 2016), we have performed forward stepwise logistic 

regression to identify models that can predict a user’s ability to detect 

attacks and non-attacks. The forward step selection process is initiated by 

creating a null model, which includes no feature variables and then proceeds 

to iteratively test the addition of each variable in the feature space against a 

model comparison criterion, such as Akaike or Bayes information criterion, 

Pseudo 𝑹𝟐 or cross-validation; at each step adding variables to the model 

that improve prediction. This routine is repeated for each variable in the 

feature space until no improvement is achieved. In this study, we have 

selected 5- fold cross-validation to estimate the test error against different 

numbers of predictors. Here, the user sample is partitioned into 5 equal 

folds. Four folds are used to train the model and the remaining fold is used 

to test the model. The process is repeated 5 times so that the model is tested 
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on each fold in order to produce an average model test error; which in our 

case reports model test error at each variable selection step in the forward 

stepwise process. The result of the regression is the selection of those 

features that have a statistically significant impact on the probability of a 

user’s correct prediction. For 𝑲 number of features used in the prediction, 

and a given user’s value for each feature 𝒌 ∈ {𝟏, 𝑲} being 𝑿 =  𝒙𝒌, that 

user’s predicted probability of correct detection is given by: 

 

𝑷 ̂ =  
𝒆𝜷𝟎+∑ 𝜷𝒌𝑿𝒌

𝟏 + 𝒆𝜷𝟎+ ∑ 𝜷𝒌𝑿𝒌

 

 
where 𝜷𝒌 is the coefficient of feature 𝒌, as computed by the logistic 

regression. 

 

The three cases (A, B, C) are practically differentiated by their set of 

features 𝑿 (and the corresponding coefficients 𝜷𝒌). 

 

In model A, 𝑿 = {𝑺𝟏, 𝑺𝟐, 𝑺𝟑, 𝑭 𝑨, 𝑭𝑹, 𝑫𝑹, 𝑺𝑨, 𝑪𝑳, 𝑨, 𝑮}.  

In model B, 𝑿 = {𝑭𝑨, 𝑭𝑹, 𝑫𝑹, 𝑺𝑨, 𝑪𝑳}.  

In model C, 𝑿 = {𝑺𝟏, 𝑺𝟐, 𝑭𝑨, 𝑭𝑹, 𝑫𝑹, 𝑺𝑨, 𝑪𝑳}. 

 

Following the most common practice in logistic regression, we provide the 

result in the form of 
𝒑̂

𝟏−𝒑̂
 odds ratios (OR), where: 

 

𝑶𝑹 =  
𝒑̂

𝟏 − 𝒑̂
=  𝒆𝜷𝟎+∑ 𝜷𝒌𝑿𝒌  

 
 

TABLE 2 - A3 EXHIBIT:  LOGISTIC REGRESSION ODDS RATIOS FOR CASES A,B,C.  A VALUE ABOVE 1  

INDICATES A SIGNIFICANT PREDICTOR OF CORRECT DETECTION, WHILE A VALUE BELOW 1  

INDICATES A SIGNIFICANT PREDICTOR OF INCORRECT DETECTION  

Case Predictors selected and corresponding odds ratios 

A FA (Steam):1.57, SA:1.01, S3:1.62, G:0.46, FA (Facebook):0.65 
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B FA (Steam):1.63, SA:1.01, FR:0.87, DR:0.93, CL:1.001 

C FA (Steam):1.62, SA:1.01, DR (SM):0.81, DR (IM):1.16, FR (SM):0.78, CL:1.01 

 

As an example, Table II shows the statistically significant predictors 

selected for one of the exhibits (A3) and the corresponding odds ratios. This 
is interpreted as follows: In case A, the odds of a user correctly identifying 

A3 as an attack when all other features of that user’s profile remain fixed is 

increased by 57% for every one-unit increase in the familiarity scale for the 

particular platform (Steam). In cases B and C, this is 63% and 62%, which 
shows that despite the effect of platform habitation (S. Egelman et al., 

2008), here familiarity is a very useful predictor of a human sensor’s ability 

to detect the particular attack. This agrees with previous results on the 
importance of familiarity with a system as a key enabler of distinguishing 

between what visually looks normal and what is normal behaviour (J. S. 

Downs et al., 2006; J. S. Downs et al., 2007). Also very important is the 
security self-study (S3) feature with an improvement of 62% for every one-

unit increase on the self-study scale if all other features of the user’s profile 

remain fixed. However, this could be used only in the ideal case (A), as 

whether a user has indeed carried out self-study cannot be monitored or 
confirmed in practice by the social media platform (case B) or the user’s 

employer in an enterprise environment (case C). 

 

 

4 PREDICTION PERFORMANCE RESULTS 

Next, we have performed 5-fold cross validation to estimate the prediction 

test error and plot it against the number of predictors utilised. The cross-
validated test error depends on the logit probability threshold cut-off, which 

is effectively the tuning parameter of our prediction model. For case A, 

figure 8 summarises the test error against the number of predictors that were 
added with the stepwise approach. In accordance with the generally 

accepted practice in logistic regression (D. W. Hosmer Jr, 2013), the cut-off 

value is chosen to be close to the event rate for each exhibit (i.e., the 
percentage of participants who were correct, as shown in figure 2). We 

observe that the prediction test error is sufficiently low with 2-5 predictors 

for most of the exhibits, and adding further predictors has diminishing 

returns. This can be seen also in Table II, where, although case A had all 
features available to it, the model used only five of them as useful 

predictors. 
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FIGURE 8 - CASE A: ATTACK (LEFT) AND NON-ATTACK (RIGHT) CROSS-VALIDATION TEST 

ERROR AGAINST NUMBER OF PREDICTOR VARIABLES IN THE MODEL  
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To evaluate the performance of the models in a more realistic manner, we 

focus on cases B and C. In figure 9 we summarise the overall performance 
of the models for each exhibit in case C the constrained sets of predictors 

that were chosen via logistic regression for these two cases. We use receiver 

operating characteristic curves to plot average true positive rate against false 

positive rate for different thresholds. The further above of the red diagonal 
line that goes from (0.0) to (1.1) the better the performance. We observe that 

the performance of prediction for non-attacks is rather poor, being close to 

the diagonal line. However, the approach achieves good performance for the 
prediction of three out of four attacks (A1, A2, A3), which would be the 

primary aim of a system predicting the ability of a user to correctly detect an 

attack. 

 
FIGURE 9 -  ROC CURVES FOR PREDICTION PERFORMANCE FOR EACH EXHIBIT IN CASE B (LEFT) 

AND CASE A  (RIGHT) 

 
 
As we have designed the measurement of predictor features on a linear 

scale, logistic regression analyses whether the user predictor features reflect 

a linear relationship with attack detection accuracy (e.g., more familiarity 

and greater frequencyof access resulting in a correct attack detection). 
Whilst the results thus far indicate a linear relationship between the features 

and attack detection for a number of attacks, by its nature logistic regression 

will not reveal non-linear associations that could lead to better prediction 
accuracy. 
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To further evaluate the performance of the logistic regression classifier, 

using Case C, we compare it to Random Forest (RF) classification. Unlike 
logistic regression, RF is a decision tree ensemble algorithm where feature 

linearity and linear interaction between predictors is not presumed; as it 

employs a randomised, nonlinear approach by randomly splitting features’ 

values at each decision boundary to calculate a majority vote (based on 
support from the data sample) as to whether the split feature value is a 

correct or incorrect detection. RF functions as a bootstrap aggregation 

algorithm which produces replicates of the original data sample by creating 
new datasets by random selection with replacement. With each dataset, 

multiple new models are constructed and gathered to form an ensemble of 

decision trees. Within the prediction process, all of the models in the 
ensemble are polled and the results are averaged to produce a result.  

 

To describe which features are most related to correct detection, RF 

employes a criterion known as variable importance which describes the 
order in which a feature influences the prediction of accuracy of the 

dependent variable. In table 3, the variable importance of each predictor 

feature is reported for each exhibits RF model. It is clear that on average the 
frequency and duration of accessing a social media platform improves the 

accuracy of whether a user will correctly report a social media threat. For 

exhibit A3 in particular, familiarity, frequency, duration, SA and CL are 
shown to fairly important to the prediction outcome, which reveals 

similarities to the odds ratio reported by logistic regression. 

 
TABLE 3 - RANDOM FOREST VARIABLE IMPORTANT (PER FEATURE REDUCED ACCURACY IF 

OMITTED FROM MODEL) 

Feature A1 A2 A3 A4 

SA 48.56 35.23 40.10 1.45 

CL 39.67 29.87 40.79 7.62 

Twitter 12.19 7.99 29.37 -3.52 

FR (Social Media) 41.65 17.13 25.04 16.61 

DR (social Media) 33.84 6.70 24.60 17.82 

Edu 8.62 12.66 12.81 12.71 

S1 10.53 0.11 8.01 -9.28 

S2 10.32 2.97 5.63 7.80 

S3 17.86 11.23 9.64 4.48 

 

 
To compare the performance of the logistic regression and RF models, 

focusing on case C, in 9, we summarise the overall performance of the 

models against exhibits in case C. As before, we use receiver operating 
characteristic curves to plot average true positive rate against false positive 
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rate for different thresholds. The test results clearly show that logistic 

regression outperforms RF for all attack exhibits, which provides a 
convincing argument for the linear relationship between the user predictor 

features analysed in this experiment and the user attack detection.  As a 

result, we can surmise that a user reporting high social media platform 

familiarity, security awareness and computer literacy self-efficacy, in 
general will be more likely to correctly detect an attack on that target 

platform. 

 
FIGURE 10 - ROC CURVES FOR PREDICTION PERFORMANCE FOR EACH ATTACK (LEFT) AND NON-
ATTACK (RIGHT)  EXHIBIT:  LOGISTIC REGRESSION (BLACK) VS. RANDOM FOREST (ORANGE) 

 
 
 

5 CONCLUSION 

We have presented the results of a large-scale online experiment, measuring 

the performance of users as human sensors of deception-based security 

attacks in social media. In cases B and C, we have demonstrated the 

utilisation of human generated attributes as a practical measure to predict 
user accuracy and credibility of reported semantic attacks against a social 

media platform; identifying consistent performance between a number of 

attacks across a limited set of indicators that are ethical and can be measured 
automatically and in real-time. We have shown that it is feasible to predict 

to some extent users’ ability as detectors of such attacks, which can be 

highly useful in environments where the concept of the human sensor of 
security threats may be considered, including the social media platforms 

themselves or corporate environments where employees use social media. 
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The next stage in this work will involve the development of a technical 

system that can operate in both a corporate environment and external 
independent platform. Future research in this field can also investigate the 

feasibility of using human sensors for deception-based attacks in different 

environments, such as in the context of cloud computing (R. Heartfield and 

G. Loukas, 2013), the Internet of Things and cyber-physical systems (G. 
Loukas, 2015). 

 

Up to now, we have focused on deception-based attacks, where the user is 
deceived into performing a compromising action. However, it is likely that 

the concept of the human sensor can potentially be extended to attacks that 

do not involve deception. For instance, it is the human users of a website 
that often first notice that a website is experiencing poor availability and 

their reports could complement network monitoring and help speed up 

denial of service detection (E. Gelenbe et al., 2004; G. Loukas and G. Oke, 

2007). Also, in cyber-physical systems, such as semiautonomous vehicles, 
the human operator is likely to be the first to observe the adverse physical 

impact of a command injection attack (T. Vuong et al., 2015). In the future, 

we intend to extend the scope of this research on human sensors of security 
threats in terms of types of attacks and platforms involved. The aim is by no 

means to replace technical security systems, but to enhance them by 

leveraging human sensing capacity and experience. 
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