
Evaluating the reliability of users as human sensors
of social media security threats

Ryan Heartfield
Computing and Information Systems

University of Greenwich, UK
Email: r.j.heartfield@gre.ac.uk

George Loukas
Computing and Information Systems

University of Greenwich, UK
Email: g.loukas@gre.ac.uk

Abstract—While the human as a sensor concept has been
utilised extensively for the detection of threats to safety and
security in physical space, especially in emergency response and
crime reporting, the concept is largely unexplored in the area
of cyber security. Here, we evaluate the potential of utilising
users as human sensors for the detection of cyber threats,
specifically on social media. For this, we have conducted an
online test and accompanying questionnaire-based survey, which
was taken by 4,457 users. The test included eight realistic social
media scenarios (four attack and four non-attack) in the form
of screenshots, which the participants were asked to categorise
as “likely attack” or “likely not attack”. We present the overall
performance of human sensors in our experiment for each exhibit,
and also apply logistic regression to evaluate the feasibility of
predicting that performance based on different characteristics of
the participants. Such prediction would be useful where accuracy
of human sensors in detecting and reporting social media security
threats is important. We identify features that are good predictors
of a human sensor’s performance and evaluate them in both a
theoretical ideal case and two more realistic cases, the latter
corresponding to limited access to a user’s characteristics.

Keywords—Social media, computer security, semantic attacks,
phishing, social engineering, human as a sensor.

I. INTRODUCTION

The concept of the human as a sensor has been used
extensively and successfully for the detection of threats and
adverse conditions in physical space. Examples include di-
agnosing a city’s noise pollution [1], road traffic anomalies
[2], monitoring water availability [3], neighborhood watch
schemes [4], detecting unfolding emergencies [5] and gener-
ally augmenting the situational awareness of first responders
through social media [6]. Yet, rather surprisingly the concept
is very new in relation to detecting and reporting threats in
cyber space. We are aware of only one very recent example
of research geared specifically towards phishing attacks [7].
Here, we take the first steps towards exploring the applicability
of the concept more generally by testing the reliability of
human users as sensors of security threats. Our focus is on
threats to social media. We have conducted a large-scale online
experiment where we have asked 4,457 users to distinguish
between attacks and non-attacks on different online usage
scenarios presented to them as visual exhibits. The focus
of this paper is the analysis of the performance of human
users as threat sensors with four examples of social media
attacks and four examples of legitimate social media usage.
Also, complementing previous research on predicting whether
a particular attacker will be successful in their attack [8], [9],

here we identify features and models for predicting whether a
particular user will successfully detect an attack.

II. RELATED WORK

Stembert et al. [7] have very recently proposed combining
a reporting function with blocking and warning of suspicious
emails and the provision of educative tips, so as to harness
the intelligence of expert and novice users in detecting email
phishing attacks in a corporate environment. Initial experi-
mental results of their mock-up have been encouraging for
the applicability of the human as a sensor concept in this
context. Here, we focus on the detection capability of the users
by evaluating the performance of a large number of users of
different profiles and for a wider range of attacks than only
phishing emails. That is because before building a system that
depends extensively on a particular type of sensors (and the
human sensor is no exception), one needs to be aware of their
overall reliability and to be able to predict how well they will
perform in different conditions (in this case, with regards to
the profiles of the users and the type and difficulty of attacks
they are expected to detect and report).

Specifically in relation to social media, it is particularly
important to be able to tell to what extent users can correctly
detect and report deception-based security threats [10]. In this
respect, the related work on user susceptibility to phishing and
other semantic social engineering attacks is highly relevant.
Predicting whether a user will be deceived into clicking
on a fraudulent link or not has traditionally been studied
in the realm of behavioural science, where different studies
have found that higher degrees of normative, affective and
continuance commitment, obedience to authority and trust
[11], submissiveness [12], neurotic behaviour [13] and con-
scientiousness [14] all correlate with high susceptibility to
phishing. Also, research in [15] has reported openness, positive
behaviour (e.g., use of positive language) and high levels of
conversationalist activity as predictors of vulnerability to an
online social network bot. However, such behavioural features
are rarely practical if the aim is to predict a user’s ability to
detect attacks within a technical platform. For instance, how
would a system measure conscientiousness or submissiveness
in real-time, automatically and ethically? Similarly, a number
of research studies have reported that female participants were
found to be more susceptible to phishing attacks than male
participants [14], [16]–[18], but again this is not a predictor
that could be used, for instance, in a corporate environment,
as it would amount to discrimination. Instead, more practical



Fig. 1: Geographical distribution of study participants

is to know whether users have previously received training on
social media security or generally on security threats, which is
consistently seen as a useful predictor of their ability to spot
them [19], albeit to a varying degree.

Here, we utilise the literature to identify a first set of
predictors of a user’s ability to detect deception-based attacks
and using statistical analysis we select the most relevant
among them for different environments. We extend the scope
beyond phishing and spear-phishing by including fake apps and
QRishing, and measure the ability of users to detect them and
the ability of our statistical models to predict whether they
will. As the longer-term aim is to incorporate prediction to
a technical platform, we are primarily interested in predictors
that can be considered as practical, in the sense that their value
can be provided or measured in real-time, automatically and
ethically.

Fig. 2: Percentage of participants that identified correctly
whether each exhibit corresponds to a non-attack (NA1, NA2,
NA3, NA4) or an attack (A1, A2, A3, A4)

III. METHODOLOGY

We have conducted a quantitative on-line experiment im-
plemented in the on-line survey platform Qualtrics, consisting
of a short survey for the collection of demographic and
platform behaviour data, and an exhibit-based test. Participants

were recruited primarily via popular on-line forums and social
media communities, such as Reddit, 4CHAN, StumbleUpon,
Facebook and Twitter, with an online advertisement challeng-
ing them to test their ability to detect attacks. Figure 1 shows
the geographical distribution of the participants.

Fig. 3: Example of Twitter phishing website (A1)

Fig. 4: Example of a Twitter phishing email (A2)

A. User profile features

The survey portion of the experiment required participants
to answer a series of questions related to their age (A), gender
(G), security training (S1, S2, S3), platform familiarity (FA),
frequency (FR), duration of use (DR), computer literacy (CL),
security awareness (SA) and education (EDU). These features
are described below:

A. Age. Coded in groups as: 18-24(1), 25-34(2), 35-44(3),
45-54(4), 55-64(5), 65+(6)
G. Gender.
S1. Formal computer security education (S1), Coded as
a binary response. In relation to the terminology used in
[20], S1 is “Formal Learning”.
S2. Work-based computer security training (S2). Coded
as a binary response. In relation to the terminology used
in [20], S1 is “Non-formal Learning”.



Exhibit Description
NA1 Facebook app download from Googleplay, with application permission requirements presented
NA2 Tweet with shortened URL leading to legitimate search on search engine Startpage
NA3 Accidentally mistyped URL for Facebook website, leading to the legitimate Facebook login homepage
NA4 Sponsored tweet with game advertisement on Twitter app, also displaying download
A1 Twitter phishing website
A2 Twitter spear phishing email
A3 Instagram “Qrishing” post that leads to Steam phishing website
A4 Malicious Facebook app posted via friend’s timeline; once clicked, requests account permissions with URL redirection

TABLE I: Attack (A1-A4) and non-attack (NA1-NA4) exhibits included in the test

S3. Self-study computer security training (S3). Coded as
a binary response. In relation to the terminology used in
[20], S1 is “Informal Learning”.
FA. Familiarity with each platform presented in each
exhibit, coded as: Not very (1), Somewhat (2), Very (3)
FR. Frequency of use for each platform presented in the
test, coded as: Never (1), less than once a month (2), once
a month (3), weekly (4), daily (5)
DR. Duration of use. For each platform category pre-
sented in the susceptibility test, coded as: None (1), less
than 30 mins (2), 30 mins to 1 hour (3), 1 to 2 hours (4),
2-4 hours (5), 4 hours+ (6)
CL. Computer literacy coded on a scale from 0 to 100
and reported by the participants themselves.
SA. Security awareness coded on a scaale from 0 to 100
and reported by the participants themselves.
EDU. Level of education, coded as: Less than high
school (1), high school /GED (2), some college (3),
Trade/technical/vocational training (4), associate degree
(5), Bachelor’s degree (6), Master’s degree (7), doctoral
degree (8).

Fig. 5: Example of Instagram Qrishing attack and Steam
phishing website (A3)

B. Exhibits

The test included four exhibits showing attacks (figures 3,
4, 5 and 6) and four exhibits showing normal (non-attack)
usage, with an example of these shown in figure 7. For the
purposes of demonstration, we have added green outlines
that represent a potentially deceiving visual component of the
exhibit and red outlines representing visual attack indicators
in each attack exhibit. These lines were not shown to the
participants. The eight attack and non-attack exhibits are
summarised in table I.

Fig. 6: Example of malicious Facebook app attack (A4)

Fig. 7: Example of legitimate Twitter app advertisement (NA4)

Figure 2 shows the percentage of participants that identified



correctly whether each exhibit corresponds to an attack or not.
This can also be considered as a metric of the difficulty of
each exhibit.

Our focus is on achieving prediction of a user’s ability
to correctly distinguish between attacks and non-attacks. For
this, we consider the theoretical ideal case, where all features
can be utilised (case A), as well as two more constrained and
more likely future implementations: (case B) as a reliability
prediction module in a security threat reporting mechanism
on a social media platform, and (case C) as a mechanism for
predicting susceptibility to attacks in enterprise environments
with extensive monitoring of the users.

Case A: Ideal case with all features

This is the theoretical ideal case, where we predict whether
a user will correctly detect an attack or non-attack with access
to the complete profile of a user.

Case B: Report reliability prediction in lightly-monitored so-
cial media

Here, we consider the case where the users of a social
media platform are encouraged to act as human sensors and
report security threats when they spot them. The social media
platform would want to evaluate the trustworthiness of each re-
port based on the human sensor’s predicted ability to correctly
detect attacks (true positives) and avoid mislabelling normal
social media usage as attacks (false positives). The challenge
is that only a few of the predictors discussed in Section III
are practical. Specifically, it is assumed that the social media
provider collects data only on frequency and duration of use,
and can additionally request the user to self-report computer
literacy, security awareness and platform familiarity. The focus
here is on achieving a balance between true positive and false
positive reports.

Case C: Susceptibility prediction in heavily-monitored enter-
prise environment

Here, we consider the case where the users are employ-
ees within an enterprise environment. Their organisation is
interested in estimating the likelihood that they would be
deceived by an attack, for instance to determine whether they
should control their usage of social media, display warnings,
recommend training etc. The organisation can have access to
more input features than in case B, including their training
history, but for ethical reasons cannot make use of protected
information, such as age and gender, which were available in
case A. Also, in this context where there is no reporting, false
positives and true negatives are of lower importance than true
positives and false negatives.

IV. PREDICTION MODEL

The prediction of whether a user will correctly or incor-
rectly detect an attack (or non-attack) is a binary classification
problem. Using R [21], we have performed forward stepwise
logistic regression to identify models that can predict a user’s
ability to detect attacks and non-attacks. The forward step
selection process is initiated by creating a null model, which
includes no feature variables and then proceeds to iteratively

test the addition of each variable in the feature space against
a model comparison criterion, such as Akaike or Bayes infor-
mation criterion, Pseudo R2 or cross-validation; at each step
adding variables to the model that improve prediction. This
routine is repeated for each variable in the feature space until
no improvement is achieved. In this study, we have selected 5-
fold cross-validation to estimate the test error against different
numbers of predictors. Here, the user sample is partitioned
into 5 equal folds. Four folds are used to train the model and
the remaining fold is used to test the model. The process is
repeated 5 times so that the model is tested on each fold in
order to produce an average model test error; which in our
case reports model test error at each variable selection step in
the forward stepwise process.

The result of the regression is the selection of those features
that have a statistically significant impact on the probability of
a user’s correct prediction. For K number of features used
in the prediction, and a given user’s value for each feature
k ∈ {1,K} being X = {xk}, that user’s predicted probability
of correct detection is given by:

p̂ =
eβ0+

∑
βkxk

1 + eβ0+
∑

βkxk

where bk is the coefficient of feature k, as computed by the
logistic regression.

The three cases (A, B, C) are practically differentiated by
their set of features X (and the corresponding coefficients βk).

In model A, X = {S1, S2, S3, FA, FR,DR, SA,CL,A,G}.
In model B, X = {FA,FR,DR, SA,CL}.
In model C, X = {S1, S2, FA, FR,DR, SA,CL}.

Following the most common practice in logistic regression,
we provide the result in the form of p̂

1−p̂ odds ratios (OR),
where:

OR =
p̂

1− p̂
= eβ0+

∑
βkxk

TABLE II: A3 exhibit: Logistic Regression odds ratios for
cases A,B,C. A value above 1 indicates a significant predictor
of correct detection, while a value below 1 indicates a signif-
icant predictor of incorrect detection

Case Predictors selected and corresponding odds ratios
A FA (Steam):1.57, SA:1.01, S3:1.62,

G:0.46, FA (Facebook):0.65,
B FA (Steam):1.63, SA:1.01, FR:0.87,

DR:0.93, CL:1.001
C FA (Steam):1.62, SA:1.01, DR

(SM):0.81, DR (IM):1.16, FR
(SE):0.78, CL:1.01

As an example, Table II shows the statistically significant
predictors selected for one of the exhibits (A3) and the
corresponding odds ratios. This is interpreted as follows: In
case A, the odds of a user correctly identifying A3 as an
attack when all other features of that user’s profile remain
fixed is increased by 57% for every one unit increase in the
familiarity scale for the particular platform (Steam). In cases



Fig. 8: ROC curves for prediction performance for each exhibit
in case B

B and C, this is 63% and 62%, which shows that despite
the effect of platform habitation [22], here familiarity is a
very useful predictor of a human sensor’s ability to detect
the particular attack. This agrees with previous results on the
importance of familiarity with a system as a key enabler of
distinguishing between what visually looks normal and what
is normal behaviour [23], [24]. Also very important is the
security self-study (S3) feature with an improvement of 62%
for every one unit increase on the self-study scale if all other
features of the user’s profile remain fixed. However, this could
be used only in the ideal case (A), as whether a user has indeed
carried out self-study cannot be monitored or confirmed in
practice by the social media platform (case B) or the user’s
employer in an enterprise environment (case C).

V. PREDICTION PERFORMANCE RESULTS

Next, we have performed 5-fold cross validation to estimate
the prediction test error and plot it against the number of
predictors utilised. The cross-validated test error depends on
the logit probability threshold cut-off, which is effectively the
tuning parameter of our prediction model. For case A, figures
10 and 11 summarise the test error against the number of
predictors that were added with the stepwise approach. In
accordance with the generally accepted practice in logistic
regression [25], the cut-off value is chosen to be close to the
event rate for each exhibit (i.e., the percentage of participants
who were correct, as shown in figure 2). We observe that the
prediction test error is sufficiently low with 2-5 predictors
for most of the exhibits, and adding further predictors has
diminishing returns. This can be seen also in Table II, where,
although case A had all features available to it, the model used
only five of them as useful predictors.

To evaluate the performance of the models in a more
realistic manner, we focus on cases B and C. In figures 8 and
9, we summarise the overall performance of the models with

Fig. 9: ROC curves for prediction performance for each exhibit
in case C

the constrained sets of predictors that were chosen via logistic
regression for these two cases. We use receiver operating
characteristic curves to plot average true positive rate against
false positive rate for different thresholds. The further above of
the red diagonal line that goes from (0.0) to (1.1) the better the
performance. We observe that the performance of prediction
for non-attacks is rather poor, being close to the diagonal line.
However, the approach achieves good performance for the
prediction of three out of four attacks (A1, A2, A3), which
would be the primary aim of a system predicting the ability
of a user to correctly detect an attack.

VI. CONCLUSION

We have presented the results of a large-scale online
experiment, measuring the performance of users as human
sensors of deception-based security attacks in social media. In
cases B and C we have demonstrated the utilisation of human-
generated attributes as a practical measure to predict user
accuracy and credibility of reported semantic attacks against
a social media platform; identifying consistent performance
between a number of attack across a limited set of indicators
that are ethical and can be measured automatically and in real-
time. We have shown that it is feasible to predict to some extent
users’ ability as detectors of such attacks, which can be highly
useful in environments where the concept of the human sensor
of security threats may be considered, including the social
media platforms themselves or corporate environments where
employees use social media. The next stage in this work will
involve the development of a technical system that can operate
in both a corporate environment and external independent
platform. Future research in this field can also investigate the
feasibility of using human sensors for deception-based attacks
in different environments, such as in the context of cloud
computing [26], the Internet of Things and cyber-physical
systems [27].



Fig. 10: Case A: Attack cross-validation Test Error against
number of predictor variables in the model

Fig. 11: Case A: Non-attack cross-validation Test Error against
number of predictor variables in the model



Up to now, we have focused on deception-based attacks,
where the user is deceived into performing a compromising
action. However, it is likely that the concept of the human
sensor can potentially be extended to attacks that do not
involve deception. For instance, it is the human users of a
website that often first notice that a website is experiencing
poor availability and their reports could complement network
monitoring and help speed up denial of service detection
[28], [29]. Also, in cyber-physical systems, such as semi-
autonomous vehicles, the human operator is likely to be the
first to observe the adverse physical impact of a command
injection attack [30], [31]. In the future, we intend to extend the
scope of this research on human sensors of security threats in
terms of types of attacks and platforms involved. The aim is by
no means to replace technical security systems, but to enhance
them by leveraging human sensing capacity and experience.
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