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Abstract— Several of today’s computing challenges have been Also, it should consume minimal resources and reach detecti
met by resorting to and adapting optimal solutions that have decisions quickly in real-time before the attack builds up.
evolved in nature. For example, autonomic communication net- In the technical literature, a large number of diverse mesho
works have started applying biologically-inspired methods to h b d : f hine | . i
achieve some of their self-* properties. We build upon such Nav€ DEEN proposed ranging trom machine fearning applica-
methods to solve the recent problem of detection of Denial tions like neural networks [18], radial basis functions ]J[17
of Service networking attacks, by proposing a combination of and fuzzy classifiers [20] to statistical approaches emptpy
Bayesian decision making and the Random Neural Networks gutocorrelation functions [12], entropy and Chi-squaﬁjgﬁcs

(RNN) which are inspired by the random spiking behaviour of the g1 - sel_similarity properties [13] and energy distritart
biological neurons. Our approach is based on measuring various var,iance [19]

instantaneous and statistical variables describing the incoming . ) .
network traffic, acquiring a likelihood estimation and fusing Here, we attempt to bridge these two general directions
the information gathered from the individual input features of DoS detection, machine learning and information gatthere

using different architectures of the RNN. The experiments are with statistical methods. We have built a system which uses
conducted using the CPN networking protocol which is also based several statistical features deemed in the literature ast mo
on the RNN. significant for a DoS attack, and combines the individual
decisions in a machine learning fashion. We present and
|. INTRODUCTION compare six different implementations of it, which combine
In recent years, Denial of Service (DoS) has become a pratltiple Bayesian classifiers and the random neural network
dominant type of network security attack, which is reldtive (RNN). Bayesian classifiers have been used before for DoS
simple to launch, but particularly difficult to defend aggtin detection [9], but applied only on the rate of appearance of
An attacker only needs to take control of a number of lightlyspecific flags in the packets’ headers, and in [22], where
protected computers and order them to send simultaneousypothesis testing was used on the spectral analysis atditr
volumes of meaningless traffic to the victim. The defende detect only one very specific type of attack. In our work we
methods try to decrease the effects of the overwhelmipgesent a more general approach which aggregates likelihoo
incoming traffic in a way that will not disturb the legitimateestimation of heterogeneous statistical features and ic@mb
traffic that also arrives at the victim. This procedure can lbem in a biologically inspired neural network structure.
facilitated if the attack is detected long before the destru The random neural network (RNN) introduced by Gelenbe
tive traffic build-up, which is why most comprehensive Do$ [2] is an alternative neural network model based on the
defence systems need a detection mechanism to trigger $péking behaviour of the biological neuron instead of the
response procedure. This would not be needed in the cat&ssical approaches which assume analog transmission of
of an ideal response architecture with proactive qualiied signals. In this paper, we exploit the capability of the RNN
would render a DoS attack impossible, but such a system hiasmodel the excitatory and inhibitory interactions amotsy i
not been built to date, and proactive solutions are usualhlputs for the case of malicious incoming traffic in a network
too expensive resource-wise to operate in the absencelrofact, the experiments we conduct also exploit a RNN-based
an attack. A detection mechanism should monitor the traffieetworking protocol, the Cognitive Packet Network (CPN)
continuously and signal any developing attacks in the nstwo[15], which is an autonomic Quality of Service (QoS)-driven
which should then trigger a response mechanism aiming rmuting protocol. In CPN each flow specifies the QoS metric
protect the network resources and maintain a satisfactws} | that it wishes to optimise, and data payload is carried by
of quality of service for the legitimate users. The succdss osource routed “dumb packets” (DPs), while “smart packets”
detection mechanism is determined by a number of facto(§Ps) and “acknowledgment packets” (ACKs) gather and carry
including its probability of correct detection of the attac control information which is used for decision making. In
missed detection, and false alarm in the absence of an atta€RN, each flow specifies its QoS requirements in the form



of a QoS “goal” and SPs associated with each flow constantly as explained in Section IV. This is expected to yield a
explore the network and obtain routing decisions from netwo higher value when the probability distribution expands
routers based on observed relevant QoS information. In our over a wider range of values, indicating an increase in
experiments we use the CPN to ensure that the traffic arrives uncertainty.

to their destination quickly using the optimal routes. o Hurst Parameter. Another statistical attribute which ex-
hibits different behaviour for normal and attack traffic is
the self-similarity. Hurst parameter is an indicator of the

self similarity of traffic and can be used in DoS detection.

The task of DoS is a pattern classification problem, where For example, Xiang et al. [13] use the variations of the
the observed traffic is to be classified as normal or attack Hurst parameter of the number and the size of packets
traffic. The Bayesian Decision theory is a basic approactl use to detect attacks. In our approach we compute the actual
in pattern recognition problems. It assumes the avaitgbili  value of the Hurst parameter for the incoming bitrate,
of probabilistic descriptions of the underlying features o  for which we have used the (R/S) analysis, as described
a problem and aims to find a decision rule which would in [14]. If z is the bitrate of the incoming trafficp
minimise the risks encountered by the decision taking E®ce s the observation time, and/ is the total number of
[6]. For a two-category classification problem, let us assum  observation points, thefiR/S) is given by:
we can measure an observation valuéor a certain feature,
and we have to decide whether the observed data point falls
into the normal { ) or DoS (p) category. The practical util-
isation of Bayesian classifiers in the two-category clasaifn
problem entails evaluating the likelihood rafi¢z) = }”E;Z!iﬁfj%
and comparing it with a thresholf, = is assigned to category
wp if A(z) > T, or towy otherwise.

For any pattern classification problem, the selection of
useful and information bearing input features constitides The Hurst parameter andR/S)y are related by
significant part of the solution. In our scheme we have used (R/S)y = ¢N*, which for the selected value = 1
the features which capture both the instantaneous behraviou becomesH = logn ((R/S)n).
and the longer-term statistical properties of the traffisgd a « Delay. A natural consequence of high bitrate and building
are easily measurable without high computational costcesin up of congestion is the increase in the packet delays.
the goal of the attacker is to deny or degrade the service for Still, to our knowledge it has not been used before as
legitimate users by overwhelming either the processinder t an attack indicator. For the fastest and least invasive way
networking resources of a victim network, a DoS detection to detect changes in the delays, the node we monitor
mechanism should not further aggravate this condition with sends constantly packets at a very low rate to all its direct
considerable overhead. Being able to measure them quigkly i neighbours. By measuring the average round trip time
also a factor, since the faster detection decisions aren ttiee (RTT) for the acknowledgments to return, we have a clear
easier it is for the defence mechanisms to counter the attack indication of the congestion near the node.

« Bitrate. An unexpectedly high rate of incoming traffic is « Delay Rate. As with bitrate, depending on the type of
the most conspicuous indicator of a flooding DoS attack. the attack and for its whole duration, the packet delays
Similar measurements, such as the number of packets per are expected to undergo significant changes. We are not
flow are often used in detection mechanisms [11]. aware of existing work using the change of the delay as

. Increase in Bitrate. Another obvious characteristic of a detection feature, but we consider it a natural next step.
DoS attacks is the sudden and sustained rate of increase of
the bitrate of the incoming traffic. For example, flooding !!l. OFFLINE STATISTICAL INFORMATION GATHERING
attacks start with a long period of increasing bitrate, The probabilistic description of the network is acquired
while in pulsing attacks there are consecutive periods of the statistical information gathering phase which mainl
increasing and decreasing bitrate. consists of two steps. First, the probability density fioct

« Entropy. It has been reported in the technical literaturgdf) values are obtained for both normal and attack traffic
that the entropies of normal internet traffic and Do&nd then the likelihood ratios are calculated based on the
traffic differ significantly [8]. In this work, we compute pdfs. At each victim candidate of the network, the incoming
the entropy of the value of the incoming bitrate at th&affic is analysed offline to collect this statistical infwaition.
nodes we monitor according to [IF = — )", filogf;, Estimates of probability density functions in the form of
wheref; are the histogram values obtained for the bitratéjstograms for both normal and attack traffic are computed

II. SELECTING THEINPUT FEATURES




for each of the input features described in Section 1l. Theherep(i, j) = p*(i,5) +p~ (4, ) ande(zgj) +d(i) = 1.
pdfs are denoted byffcature(z|wn) and freature(z|wp), N _ _ j
where feature is replaced by bitrate, increase in bitrate (biP0Sitive and negative weights are computed by:

acceleration), entropy, Hurst parameter, delay and dedsy r wt (i) = r(@)pT (i, 5) > 0

respectively,x is the measured value of the feature from the 0 T

available traffic datawy denotes the normal traffic andp w™(4,4) = r(@p~(i,4) 2 0

the DosS traffic. wherer (i) is a Poisson firing rate, with independent identically

In the second step, the probability density function esti®a exponentially distributed interimpulse intervals:
obtained above for each input and for both traffic types are
used to compute the likelihood ratidg .+, Of €ach feature:
_ Jfeature(z|wp) el i r(i) =Y wh(i,j) +w(i,])
lteature = P o) These likelihood ratios are later 1] »J
used in real-time by the decision taking mechanism (Section Y
IV). Likelihood ratios, actual values and quantised actual The weightsw may be interpreted in a way analogous to the

values (histogram category values) of the features are usgsights in artificial neural networks (ANNSs), but they adiyia

also in the training of RNNs. represent excitatory and inhibitory signal emission rates
The steady state probability that the neuriois excited is
IV. DETECTION DECISION defined byg; = lim_.o Pr[k;(t) > 0] which is computed to

The statistical information collected about the network ofpe ¢; = %, where
line is utilised during the decision taking process, which

comprises two steps. In the first step, decision for each N(1) :quw+(j7i)+[\(i)
feature is given individually, and the individual decissoare j

then combined in an information fusion step to yield a final D) = r(i) + ™ (5.9) + A
outcome for the state of the traffic. The numerical value$ief t Q Q zj:qj (:9) Q

features are measured in real-time and a likelihood value fo

each feature is computed. Then, these values are aggreg#fiéd A(¢) andA(i) denoting the rates of exogenous excitatory
in a higher-level decision taking step which we realized p§nd inhibitory signal inputs into neuran respectively.
employing a feedforward (-RNN) and a recurrent (r-RNN) RNNs can be designed in both feedforward and recurrent
architecture of the RNN, with input the individual likeling architectures (f-RNN and r-RNN). In our work we have
values, histogram category values and actual values, foimplemented both architectures for the fusion of inputs to
total of six different implementations of our generic déime compare the results.
technique. The f-RNN architecture we implemented consists of an
The random neural network (RNN), proposed by Gelenlyaput layer of six nodes, a hidden layer with twelve nodes and
[2] is a computational paradigm, inspired by the randofn output layer with two nodes. Each output node stands for
spiking behaviour of the biological neurons. The RNNs ar@ decision; attack or not. The final decision about the trégfic
computationally efficient structures and they represereteeb determined by the ratio of the two output nodes. The r-RNN
approximation of the true functioning of a biophysical raur Structure we have designed consists of two layers, an input
network, where the signals travel as spikes rather tharognal@yer with twelve nodes and an output layer with two nodes.
signals. The strong analogy between queuing networks and th the input layer, there are two nodes for each input vagiabl
RNN make it a powerful tool for dealing with problems wheré&ne for the excitatory signals and one for the inhibitorysig.
excitation and inhibition among problem inputs are prevale Each node sends excitatory signals to nodes of the same type
The RNN has been successfully applied in various problen®d inhibitory to the rest. At the output layer, one node sums
including image processing [4], pattern recognition [2d)d UP the excitatory and a second the inhibitory signals. Jsist a
optimisation [3]. in the feedforward case, the decision is given by computing

In the RNN, neurons exchange positive and negative i€ ratio of the two output nodes.
pu]se Signa|sy with unit amp“tude, which represent exion For the implementation of the RNNS, we have used software
and inhibition respectively. Neurons accumulate signakhay developed in [25]. For both f-RRN and r-RNN we have used
arrive and positive signals are cancelled by negative &gndhree different types of input:
Neurons may fire if their potential is positive, to send signa « Likelihood ratios. The likelihood ratiod ¢cqtyre fOr the
either to other neurons or outside the network. In RNN a six input features are obtained by measuring their real-
signal may leave neuroh for neuronj as a positive signal time values and resorting to the likelihood ratio values
with probability p™ (i, j), as a negative signal with probability stored during the offline statistical information gathgrin
p~ (4, 7), or may depart from the network with probabilidy:), phase described in section .



Feedforward RNN with likelihoods Recurren it RNN with likelihoods

o Histogram categories These refer to the histogram /ﬁ -

0.9

intervals used to estimate the pdfs described in section *
IIl and they essentially quantise the available values. ; p .
« Actual values For the sake of comparison we have also .. gos
investigated the case in which the actual values of the .
input features are directly fed in the two types of RNN. o
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V. EXPERIMENTAL EVALUATION o o
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We have implemented and evaluated our detection mecha-
nism on a networking testbed in our laboratory, which cdesis = e e e
of 46 nodes connected with 100 MBits/sec links. We chose a ‘ P
specific node to play the role of the victim while the rest & th g °

nodes send traffic to it according to a variety of datasets tha ‘
we tried. In our experiments, we utilised traffic traces ofDo .
attacks designed both in our laboratory and by other academi ¢ ek

sources: (i) attack traffic of our design slowly increasing, * °
(i) attack traffic downloaded from [24] representing rapid | | -~ *
flood, and (iii) attack traffic downloaded from the same seurc
representing a pulsing attack, with traffic rates reciptioga B
between very low and very high values. We have used two . eedorvarg F i sewvaes Recurent RN with actulvalues
types of RNN architecture, f-RNN and r-RNN, with three o [ e
types of input for each feature: likelihood ratios, quasdis o o
histogram category values and actual values. Each experime ™ ‘ 7 >
lasts 120 sec. In the attack cases, to illustrate the diftere
in the traffic and to see graphically the operation of the :..
detection mechanism, we start with normal traffic on which we o 02
superimpose attack traffic for the time period between 5@s an  °¢ | - °
100s. The last 20s the network returns to its normal operatio g
as the attack sources stop sending traffic to the victim. \Wd us
a sampling time of 2 sec. _—
Table 1 summarises the performance results of the detectiofi
mechanism in terms of average correct detection, falsenalar

rates and detection delays, while figures 2-4 show the iaal-t

] 0.2 0.6 0.8 1 ] 0.2 0.4 0.6 0.8 1

0.4
False positives False positives

ROC curves for Dataset2 (attack)

_ . . o We have also plotted some representative ROC curves for
detection decisions as time progresses. Jhaxis in these 5 iy variations, based on one of the datasets (Fig. 1). The
graphs is in logarithmic scale with the detection metrimel o yrves are graphs of false positives versus true pesitiv
the ratio of the two output RNN nodes as described in sectighl\yhich we have referred in this paper as false alarms and
IV. The decision threshold over which an attack is signaied . ract detections respectively. In an ideal system, th€ RO

the RNN output ratio of 1. The closer the detection ratio is Qurve should rise immediately from (0,0) to (0,1) and caugin

1 the less certain the mechanism is of its detection dECiSiO{b (1 1) We see this behaviour in all six variations. with a

Figures 2-4 correspond to the three attack datasets that $gnt advantage of the r-RNN with histogram categories and
used. All three implementations of the RNN detect the atack RN with likelihood values.

quickly and have minimal missed detections and false alarms, oqking at the overall performance of our detection mecha-
The r-RNN with actual values had high detection rates, Nfsm it emerges that apart from the f-RNN with actual values
false alarms and the lowest detection delay for all databats implementation, all methods are quite powerful detectdrs o

also provided the lowest degree of certainty for its deasioy 540k traffic. In general, the -RNN implementations are
yielding values close to 1. The use of the quantised values g

) A : observed to be more accurate and slightly faster.
histogram categories appear to improve the correct detecti
rate even further, but at the expense of a few false alarms,
while the likelihood value methods for both f-RNN and r-
RNN performed at about the same level in both respects, buiWe have described the design of a generic DoS detection
took a little longer to detect the pulsing attack (dataset3) scheme which employs multiple Bayesian classifiers and the

VI. CONCLUSIONS



False Alarm Correct  detection Detection  Delay (s)

Detection implementation | Datasetl Dataset2 Datasef3Datasetl Dataset2 Datase}3 Datasetl Dataset2  Datasef3
f-RNN likelihood values 0.17 0.11 0.08 0.96 0.96 0.84 2 0 12
f-RNN histogram categories  0.03 0.11 0.03 0.92 1 0.80 4 0 8
f-RNN actual values 1 1 1 1 1 1 0 0 0
r-RNN likelihood values 0.06 0.11 0.03 0.96 0.96 0.80 2 0 12
r-RNN histogram categories  0.06 0.06 0.06 0.96 1 0.88 2 0 8
r-RNN actual values 0 0 0 0.92 1 0.84 2 0 6

TABLE |

biologically inspired RNNs. We first select input features t[12]

COMPARISON OF THE DIFFERENT DETECTION IMPLEMENTATIONSIN TERMS OF FALSE ALARM AND CORRECT DETECTION RATES

capture both the instantaneous behaviour and the longar-te
statistical properties of the traffic and in an offline infation

gathering step we obtain the probability density function

estimates and evaluate likelihood ratios. Then, during the
o . . 14]

decision taking step, we measure the features of the mq;pm[n

traffic to reach detection decisions according to each featu

These are combined into an overall detection decision usii§!
both feedforward and recurrent architectures of RNN. They
experiments we conducted showed that our mechanism is able
to detect DoS threats in a timely fashion and can very quickly

identify the end of an attack, at least for the range of attack 7,

that we investigated.
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for the RNN,
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Fig. 3. Detection results for Dataset2 (attack)
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Fig. 4. Detection results for Dataset3 (attack)



