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Abstract

In a world that is becoming increasingly dependent on In-
ternet communication, Denial of Service (DoS) attacks have
evolved into a major security threat which is easy to launch
but difficult to defend against. In order for DoS countermea-
sures to be effective, the attack must be detected early and
accurately. In this paper we propose a DoS detection tech-
nique based on observation of the incoming traffic and a com-
bination of traditional likelihood estimation with a recurrent
random neural network (r-RNN) structure. We select input
features that describe essential information on the incoming
traffic and evaluate the likelihood ratios for each input, to
fuse them with a r-RNN. We evaluate the performance of
our method in terms of false alarm and correct detection rates
with experiments on a large networking testbed, for a variety
of input traffic.

1. INTRODUCTION

Denial of Service (DoS) attacks have existed since the
early 1990s, but they were not considered a major threat as
they were not involved in high-profile incidents. Things have
changed the last seven years mainly due to the significant fi-
nancial damages inflicted on several organisations with online
presence. DoS attacks are disproportionately easy to launch,
since the necessary tools are readily available on the web,
while defending against them takes more than installing some
software. A typical DoS attack is distributed; an attacker ac-
quires control of a number of relatively vulnerable computers,
such as those without firewall and up to date antivirus soft-
ware, and orders them to simultaneously attack a specific tar-
get by sending vast volumes of meaningless traffic. Over the
years there have been a number of smart methods proposed to
defend against DoS attacks, but they become obsolete to an
extent after a while, as the attack types evolve to counter the
latest defence trends.

In the most general sense, one can identify three stages that
should comprise a complete DoS defence system:

e Detection. Usually a system running on the victim ma-

chine identifies in real-time the existence of an attack
and triggers the initiation of the next two stages. The
detection phase consists of looking either for anomalies
in the incoming traffic or for signature characteristics of
known attack types.

e Classification. Then, the victim or the rest of the nodes
of the same network monitor the incoming traffic and
attempt to distinguish between normal traffic (sent by
legitimate users) and attack traffic (sent by nodes con-
trolled by the attacker).

e Response. Common approaches for the response phase
include dropping the traffic that was identified as attack
traffic during the classification phase, and redirecting it
to a trap where it can be analysed.

This three-phase paradigm does not mean that detection,
classification and response have to be separate entities or that
they have to be performed in strict sequence. For example,
detection and classification may be achieved by observing the
same traffic characteristics.

In this paper, we concentrate on the first of the three phases.
In the literature, DoS detection is often considered as a pattern
recognition problem where the aim is to observe and anal-
yse the incoming traffic, and for this reason various machine
learning techniques have been utilised. For example, the au-
thors of [1] have designed a Statistical Pre-Processor and Un-
supervised Neural Net based Intrusion Detector (SPUNNID),
in which the statistical pre-processor is used to extract fea-
tures from packets, and the feature vector is changed to nu-
merical form and fed to an unsupervised Adaptive Resonance
Theory net (ART). Neural networks for DoS detection are
also used in [2], which follows a data mining approach. In
[3], a scheme is presented which comprises a collector of the
appropriate data fields from the incoming packets, a feature
estimator that evaluates the frequencies for the encoded data,
and a radial basis function neural network detector to charac-
terise the incoming traffic as normal or DoS. In [4], an Adap-
tive Neuro-Fuzzy Inference System is used together with a
Fuzzy C-Means Clustering Algorithm to detect DoS attacks,
and in [5] another three computational intelligence techniques
for DoS detection are compared, namely support vector ma-
chines, multivariate adaptive regression splines and linear ge-
netic programs. In general, machine learning techniques have



been preferred by several researchers for their increased accu-
racy However, their success depends largely on how relevant
their input features are to the existence or not of an attack.

An important section of DoS detection research is directed
towards observing and analysing some statistical properties
and the energy content of normal and attack traffic. Normal
Internet traffic is known to be long-range dependent (LRD)
and self-similar, but in the case of a DoS attack there are usu-
ally important deviations for these properties [6]. For exam-
ple, in [7] the incoming traffic is characterised as normal or
DoS based solely on its autocorrelation function. In [8], the
self-similarity property of Internet traffic is used to identify
DoS attacks. The authors use the packet number or packet
size as the input feature and evaluate the Hurst parameter H
by statistical techniques. In their approach, the variance of
H in consecutive time intervals is calculated and if there is
a doubling of the variance, it is decided that a DoS attack is
in progress. In [9] the entropy is computed as a measure of
randomness, and the chi-square statistic as a measure of sta-
tistical significance and estimate of confidence, to detect the
existence of an attack. Also, since the energy distribution of
normal traffic is known to be relatively stationary, while an at-
tack usually results in changes in the energy distribution vari-
ance, in [10] wavelets are used for computing the variations
in the energy distribution in the incoming traffic. In another
study that exploits energy content [11] flat energy bursts in
the traffic are determined with the continuous wavelet trans-
form.

Here, we attempt to bridge these two general directions of
DoS detection by building a system which uses several statis-
tical features deemed in the literature as most significant for
a DoS attack, and combines the individual decisions in a ma-
chine learning fashion. We use Bayesian classifiers to assess
the likelihood of the existence of an attack and a Recurrent
Random Neural Network (r-RNN) to fuse all information into
an overall detection decision. Bayesian classifiers have been
used before for DoS detection in [12], but applied only on
the rate of appearance of specific flags in the packets’ head-
ers, and by Chen et al. [13], who used hypothesis testing on
the spectral analysis of bitrate to detect only one very spe-
cific type of attack. In our work we present a more general
approach which aggregates likelihood estimation of heteroge-
neous statistical features and combines them with a recursive
structure of the RNN. The latter is a neural network model
introduced by Gelenbe in [14], which is based on the spik-
ing behaviour of the biological neuron instead of the classical
approaches which assume analog transmission of signals. In
this work we exploit the capability of the RNN to model the
excitatory and inhibitory interactions among its inputs for the
case of malicious incoming traffic in a network. We evalu-
ate our detection technique for different traffic data in a large
networking testbed.

The rest of this paper is structured as follows. In section 2
we present a description of our detection mechanism detail-
ing input feature selection, statistical information gathering
and real-time decision taking. We continue in section 3 with a
description of the experiments we conducted and summarise
our results. In section 4 we conclude and suggest future re-
search directions of our work and DoS research in general.

2. DETECTION MECHANISM

DoS detection mechanisms in the literature have often suf-
fered from a lack of plurality and diversity in the selection
of input features, which in turn results in overspecialisation.
In our work we address this weakness by selecting a variety
of different input features and following a two-stage decision
taking process. In the first stage, the likelihood of the exis-
tence of an attack is computed according to each input fea-
ture. These likelihood values are then fused using a recurrent
random neural network to reach an overall detection decision.

2.1. Input Feature Selection

In our detection mechanism we use both instantaneous and
statistical characteristics of the incoming traffic, which ex-
hibit distinctly different behaviour in case of normal and DoS
traffic. Since the goal of the attacker is to deny or degrade
the service for legitimate users by overwhelming either the
processing or the networking resources of a victim network,
a DoS detection mechanism should not further aggravate the
situation. Thus, the input features must be easily measurable
to conform with the requirement of timely detection without
heavy processing load.

e Bitrate. During the majority of DoS attacks, the bitrate
of the incoming traffic exhibits a ramp-up behaviour,
a sharp increase at the beginning of the attack which
reaches a peak when all attack flows have arrived. How-
ever, while an increasing bitrate could be a convincing
confirmation of a DoS attack, it cannot be an absolute
proof, since such ramp up behavior can also be observed
in flash crowds, which are sharp increases in legitimate
connections due to some significant event.

o Increase in Bitrate. Increase in bitrate is often accom-
panied by increase in its rate of change. This can be ob-
served in flooding attacks which start with a long period
of increasing bitrate, and in pulsing attacks, which ex-
hibit consecutive periods of increasing and decreasing
bitrate. Determining the rate of change of bitrate pro-
vides additional information for DoS detection.

e Entropy. Entropy is an indication of the degree of un-
certainty associated with the underlying probability de-
scription of the data. For example, a probability distribu-
tion expanding over a wide range of values would yield



high entropy. It has been established in the technical lit-
erature that the entropy content in normal Internet traffic
and traffic under DoS attack differ significantly and thus
it can be used as a discriminator in attack detection. For
example, in [9] the entropy of the amount of source IP
addresses to detect attacks is computed as a detection
criterion. In our detection mechanism, we calculate the
entropy associated with the incoming traffic as given by
[15]:

E=-} filogf: (1

where f; are the histogram values obtained for the bi-
trate.

e Hurst Parameter. Normal Internet traffic is known to

be self-similar or equivalently long-range dependent, a
measure of which is the Hurst parameter. Xiang et al.
[8] use the variations of the Hurst parameter of the num-
ber and the size of packets to detect attacks in consecu-
tive time intervals. We use the actual value of the Hurst
parameter for the incoming bitrate in our study and we
compute it using the (R/S) analysis, as described in [16].
Below, x is the bitrate of the incoming traffic, n is the ob-
servation time, and N is the total number of observation
points, the (R/S) is given by:
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The Hurst parameter and (R/S)y are related by
(R/S)y = cNM, which for ¢ = 1 becomes H =
logn((R/S)x).

e Delay. A natural consequence of high bitrate and build-
ing up of congestion is the increase in the packet de-
lays. Still, to our knowledge it has not been used before
as an attack indicator. For the fastest and least invasive
way to detect changes in the delays, the node we moni-
tor sends constantly a small number of packets to all its
direct neighbours. By measuring the average round trip
time (RTT) for the acknowledgments to return, we have
a clear indication of the congestion near the node.

e Delay Rate. As with bitrate, depending on the type of
the attack and for its whole duration, the packet delays
are expected to undergo significant changes. We are not
aware of existing work using the change of the delay as
a detection feature, but we consider it a natural next step.

2.2. Statistical Information Gathering

In order to collect statistical information about the traffic,
the node that we are defending monitors the incoming flows
and accumulates data. This phase comprises two steps, ob-
taining the probability density functions (pdf) and computa-
tion of the likelihoods. A probabilistic description of the net-
work traffic is derived by estimating the pdfs for both normal
and attack traffic in the form of histograms, for all the input
features that we described in section 2.1.. The pdfs are in-
dicated by frearure(x|wn) and freaure(x|wa), where x is the
measured value of the feature from the available traffic data,
wy denotes the normal traffic, wy the attack traffic and fearure
refers to bitrate, bit acceleration (increase in bitrate), entropy,
Hurst parameter, delay and delay rate respectively.

After obtaining the pdfs, the next step of information gath-
ering entails calculation of the likelihoods, /feqrure for each

Sfeature (x[wa)
. ffeatu.re(x‘WN) . . L.
decision taking mechanism. The Bayesian decision theory

aims to minimise the risks encountered by the decision tak-
ing process by evaluating the various tradeoffs between deci-
sions [17]. Detection of DoS attacks is a two-category pattern
recognition problem, where the discriminator observes traffic
values and decides whether the incoming traffic is normal or
part of an attack. For a classification problem with two cate-
gories (w1 and wy), Bayesian classifiers are used by evaluat-
ing the likelihood ratio, which is the ratio of the probability

density functions A(x) = ;gm; , for the measured value x of
the observation variable, and comparing it with a threshold
T. Then, x is assigned to category w; if A(x) > T’; otherwise
it is assigned to category wo [18]. This step is performed in

real-time detection phase, which is discussed in detail next.

feature: , which will then be used in the Bayesian

2.3. Decision Taking

The victim node monitors the incoming traffic continu-
ously and measures network parameters to determine the cur-
rent values of the input features. According to the measured
values, likelihoods ratios are computed by referring to the
likelihood values already stored during the statistical infor-
mation gathering phase. These likelihood ratios indicate a
measure of ongoing attack possibility with respect to each
input feature. These individual likelihood ratios, which can
also be interpreted as first order decisions, are then combined
in an information fusion phase, by r-RNNs. By combining
decisions established by different features describing various
charateristics of the traffic, we aim to decrease false alarm rate
and increase the correct decision rate, since erroneous deci-
sions resulting in learning and generalisation steps can now
be compensated.

The RNN is a biologically inspired architecture, applied
successfully in various areas, including image processing
[19], pattern recognition [20], and optimisation [21]. RNNs



model the signals propagating between neurons as spikes
rather than analog signals and therefore provide a more re-
alistic approximation to real biological neurons than artifi-
cial neural networks. They also carry a strong analogy with
queuing systems, which is why they have also been used as
the basis of a networking protocol [22]. In the RNNs positive
and negative impulse signals, with unit amplitude, which rep-
resent excitation and inhibition respectively are accumulated
in neurons. Positive signals are cancelled by negative signals
and neurons may fire if their potential is positive.

A signal may leave neuron i for neuron j as a positive sig-
nal with probability p* (i, j), as a negative signal with prob-
ability p~ (i, j), or may depart from the network with proba-
bility d(i), where Y p* (i, j)+ p~ (i, j)) +d(i) = 1. Positive

j

and negative Weighfs can be computed by:

wh(jyi) = r(Dp* (i, j) 2 0

w (1) =r(@)p~(i,j) 2 0
where weights w represent excitatory and inhibitory signal
emmission rates and r(i) is a Poisson firing rate, with inde-

pendent, identical exponentially distributed inter-impulse in-
tervals:

r(l) = ZWJr(i?j)_‘_wi(ivj)

J

The steady state probability that the neuron i is excited can

be computed by ¢; = %, where

NG = Y g™ (i) +AG)
J

D(i) = r(i) + X gw (7.) + 1)
J

with A(i) and A(i) denoting the rates of exogenous excitory
and inhibitory signal inputs into neuron i, respectively.

In order to fuse the individual decisions obtained by evalu-
ating the likelihood ratios associated with each input feature
we have designed a r-RNN consisting of two layers, an input
layer with twelve nodes and an output layer with two nodes,
as depicted in Figure 1. In the input layer, we have employed
two nodes for each input variable; one for the excitatory sig-
nals and one for the inhibitory signals. Each node sends exci-
tatory signals to same type of nodes and inhibitory signals to
opposite types of nodes. At the output layer, excitatory signals
are collected at one node and inhibitory signals are summed
up at the second node. To obtain the final decision, the ratio
of the output nodes is computed, a ratio with a value smaller
than 1 denotes normal traffic while if it is greater than 1, an
attack is signalled.

In addition to aggregating likelihoods with RNNs, we have
also implemented RNNs with actual and quantised histogram

values of input features. The advantage of using histogram
values compared to actual values is that, in the learning phase
the RNN has to learn a smaller set of values , hence the learn-
ing performance will be improved. We repeated the exper-
iments with actual data merely for comparison reasons. To
implement the RNNs, we have used the software developed
in [23].
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Figure 1. Random Neural Network in the recurrent architec-
ture used in the experiments

3. PERFORMANCE EVALUATION

We have implemented our detection mechanism on a large
networking testbed in our laboratory. The testbed consists of
46 nodes connected with 100 MBits/sec links and the topol-
ogy of Fig. 2. Instead of following a random topology, we
chose to recreate a representative academic one, which is the
SwitchLAN ! backbone network topology. We chose a spe-
cific node to play the role of the victim while the rest of the
nodes send traffic to it according to a variety of datasets that
we tried.

We have designed a r-RNN with three types of inputs, the
likelihoods of the input features, their quantised histogram
values and the actual raw data. We have used four types of
datasets. DatasetO and Dataset] are designed by ourselves ac-
cording to our experience with DoS attacks, and represent
normal and attack traffic respectively. Dataset2 and Dataset3

The SwitchLAN network provides service in Switzerland to all univer-
sities, two federal institutes of technology and the major research institutes.
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Figure 2. The network topology used in the experiments

have been extracted from data acquired from an online reposi-
tory of traces [24] and represent flooding and pulsing attacks.
For these we recreate the exact attack scenarios by allocat-
ing the traffic sent by each source node of the traces to a
node in our topology. All our experiments last 120s and we
have measured the variables with a sampling rate of 2s. In the
attack cases, to illustrate the difference in the traffic and to
see graphically the operation of the detection mechanism, we
start with normal traffic on which we superimpose attack traf-
fic for the time period between 50s and 100s. The last 20s the
network returns to its normal operation, as the attack sources
stop sending traffic to the victim.

Table 1 summarises the performance results of the detec-
tion mechanism in terms of average correct detection and
false alarm rates, and figures 3-6 show the real-time detec-
tion decisions as time progresses. The y axis in these graphs
is in logarithmic scale with the detection metric being the ra-
tio of the two output RNN nodes as described in section 2.3..
The decision threshold over which an attack is signalled is the
RNN output ratio of 1. The closer the detection ratio is to 1
the less certain the mechanism is of its detection decision.

The results of fig. 3 show that for normal traffic the RNNs
signal correctly the absence of attack throughout the dura-
tion of the experiment, although not with the same degree of
certainty. Figures 4-6 correspond to the three attack datasets
that we used. All three implementations of the RNN detect
the attacks quickly and have minimal missed detections and
false alarms. The r-RNN with actual values had very high de-
tection rate and no false alarms for any of the datasets, but
also showed the lowest degree of certainty for its decisions
by yielding values close to 1. The use of the quantised val-
ues of histogram categories appeared to improve the correct
detection rate even further, but at the expense of a few false
alarms, while the likelihood values performed at about the
same level in both respects.
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Figure 3. Detection results for DatasetO (normal traffic)

4. CONCLUDING REMARKS

In this paper we have purposefully chosen not to discuss
about the special case of flash-crowd, where there is an un-
usually sharp increase in the number of legitimate visitors to
a website due to some significant event. Although all traffic
may be legitimate, the consequences are very similar to those
of DoS attacks, such as network outages and dramatically re-
duced quality of service. In our opinion, flash-crowds could
be handled as a third category in our Bayesian classification
problem, but there has not been enough work in the literature
on the existence of unique statistical properties that charac-
terise these phenomena.

Also, there are two major weaknesses in current DoS re-
search, namely the lack of standards of evaluation for the
detection and defence methods and the scarce information
on modern types of attacks. Launching real attacks against
real networks with real legitimate users, is impractical, and



False Alarm Correct Detection
Detection method Dataset1 Dataset2 Dataset3 | Datasetl Dataset2 Dataset3
r-RNN with likelihood values 0.06 0.11 0.03 0.96 0.96 0.80
r-RNN with histogram categories 0.06 0.06 0.06 0.96 1 0.88
r-RNN with actual values 0 0 0 0.92 1 0.84

Table 1. Comparison of the three detection implementations, in terms of false alarm and correct detection rates
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Figure 4. Detection results for Dataset] (attack traffic)

this leaves the researchers with the option of less depend-
able datasets, e.g. simulated or acquired from outdated traf-
fic traces. A pragmatic solution to these problems consists
in organising a close cooperation of the research commu-
nity with organisations which are frequently under attack,
such as e-commerce and online betting websites. Accurate
and up-to-date datasets will help distinguish the best defence
approaches in an unbiased manner and will prompt further
research and improvements in detection and defence mech-
anisms. Until these goals are achieved, however, researchers
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Figure 5. Detection results for Dataset2 (attack traffic)

will have to either use the existing obsolete datasets or cre-
ate their own. In this work we chose to do both, but for the
reasons we explained we cannot argue on how these datasets
compare against others and how realistic they are. We can,
however, argue that our investigation method, using a real
large networking testbed, instead of simulation, should pro-
vide a significant degree of realism. The experiments we con-
ducted showed that our mechanism is able to detect DoS
threats in a timely fashion and can even very quickly iden-
tify the end of an attack, at least for the range of attacks that
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Figure 6. Detection results for Dataset3 (attack traffic)

we investigated.

This paper presents part of our ongoing work to develop a
complete DoS defence architecture covering all three aspects
mentioned in section 1.. In [25] and [26] we presented our ap-
proaches on classification and response, which naturally we
intend to combine with the work presented here. Also, a way
to improve the detection performance of our current mecha-
nism for each individual node employing it is by introducing
cooperation between the various nodes involved in the DoS
defence. This we have already achieved in our work for clas-
sification and response, and would be particularly useful for
accurate detection too.
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