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Abstract

In spite of extensive research in defence against De-
nial of Service (DoS), such attacks remain a predom-
inant threat in today’s networks. Due to the sim-
plicity of the concept and the availability of the rele-
vant attack tools, launching a DoS attack is relatively
easy, while defending a network resource against it
is disproportionately difficult. The first step of any
comprehensive protection scheme against DoS is the
detection of its existence, ideally long before the de-
structive traffic build-up. In this paper we propose a
generic approach for DoS detection which uses multi-
ple Bayesian classifiers and random neural networks
(RNN). Our method is based on measuring various
instantaneous and statistical variables describing the
incoming network traffic, acquiring a likelihood esti-
mation and fusing the information gathered from the
individual input features using likelihood averaging
and different architectures of RNNs. We present and
compare seven different implementations of it and
evaluate our experimental results obtained in a large
networking testbed.
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1 Introduction

During the last decade Denial of Service attacks
(DoS) have evolved from simple acts of nuisance to
a predominant network security threat with reper-
cussions including significant financial losses [39], en-
dangerment of human life [40] and compromising of
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national security [41]. In the majority of DoS at-
tacks the attacker acquires control of a large number
of hosts, which are unaware that their machines are
compromised, and orders them to simultaneously tar-
get a victim network node or set of nodes. The goal
of a DoS attack is to deny service to legitimate users
of the victim system by overwhelming its network or
processing resources.

The extreme diversity of DoS attack types, tar-
gets and motives has produced similarly diverse pro-
tection proposals from the network security research
community. In the most general sense, one can iden-
tify three stages that should comprise a complete DoS
defence system:

e Detection. Usually a system running on the
victim machine identifies in real-time the exis-
tence of an attack and triggers the initiation of
the next two stages. The detection phase con-
sists of looking either for anomalies in the in-
coming traffic or for signature characteristics of
known attack types.

e Classification. Then, the victim or the rest of
the nodes of the same network should monitor
the incoming traffic and attempt to distinguish
between normal traffic (sent by legitimate users)
and attack traffic (sent by nodes controlled by
the attacker).

e Response. Common approaches for the re-
sponse phase include dropping the traffic that
was identified as attack traffic during the classi-
fication phase, and redirecting it to a trap where
it can be analysed.

This three-phase paradigm does not mean that de-
tection, classification and response have to be sep-
arate entities or that they have to be performed in
strict sequence. For example, detection and classifi-
cation may be achieved by observing the same traffic
characteristics. Over the years several smart methods



have been proposed to address each of these stages,
but most become obsolete to an extent after a while,
as the attack types evolve to counter the latest de-
fence trends.

In this paper we concentrate on the first of the
three stages. To provide a network with an effective
system of protection against DoS attacks, one must
first employ a method to detect such an attack. This
would not be needed in the case of an ideal response
architecture with proactive qualities that would ren-
der a DoS attack impossible, but such a system has
not been built to date, and proactive solutions are
usually too expensive resource-wise to operate in the
absence of an attack. A detection mechanism should
monitor the traffic continuously and signal any de-
veloping attacks in the network, which should then
trigger a response mechanism aiming to protect the
network resources and maintain a satisfactory level
of quality of service for the legitimate users. The
success of a detection mechanism is determined by a
number of factors, including its probability of correct
detection of the attack, missed detection, and false
alarm in the absence of an attack. Also, it should
consume minimal resources and reach detection de-
cisions quickly in real-time so that the classification
and response mechanisms are initiated before the at-
tack builds up.

Since DoS detection is often considered as a pat-
tern recognition problem where the aim is to ob-
serve and analyse the incoming traffic, various ma-
chine learning techniques have been proposed. For
example, the authors of [29] have designed the Sta-
tistical Pre-Processor and Unsupervised Neural Net
based Intrusion Detector (SPUNNID), in which the
statistical pre-processor is used to extract features
from packets, and the feature vector is changed to
numerical form and fed to an unsupervised Adaptive
Resonance Theory net (ART). Neural networks for
DoS detection are also used in [15], which follows a
data mining approach. In [28], a scheme is presented
which comprises a collector of the appropriate data
fields from the incoming packets, a feature estimator
that evaluates the frequencies for the encoded data,
and a radial basis function neural network detector
to characterise the incoming traffic as normal or DoS.
In [30], an Adaptive Neuro-Fuzzy Inference System is
used together with a Fuzzy C-Means Clustering Algo-
rithm to detect DoS attacks, and in [33], a fuzzy clas-
sifier is decribed, where cross-correlation functions
between incoming and outgoing traffic are used as in-
puts. In [16] another three computational intelligence
techniques for DoS detection are compared, namely

support vector machines, multivariate adaptive re-
gression splines and linear genetic programs, for each
one of which the same authors present feature rank-
ing algorithms in [17]. The problem of selecting the
most useful input features has also been addressed in
[26], where a genetic algorithm is used.

An important section of DoS detection research is
directed towards observing and analysing statistical
properties and the energy content of normal and at-
tack traffic. Normal Internet traffic is known to be
long-range dependent (LRD) and self-similar, but in
the case of a DoS attack there are usually important
deviations for these properties [34]. For example, in
[19] the incoming traffic is characterised as normal
or DoS based solely on its autocorrelation function.
In [20], the self-similarity property of Internet traf-
fic is used to identify DoS attacks. The authors use
the packet number or packet size as the input feature
and evaluate the Hurst parameter H by statistical
techniques. In their approach, the variance of H in
consecutive time intervals is calculated and if there is
doubling of the variance, it is decided that a DoS at-
tack is in progress. In [12] the entropy is computed as
a measure of randomness, and the chi-square statistic
as a measure of statistical significance and estimate
of confidence, to detect the existence of an attack.
Based on the observation that highly correlated pack-
ets are used in Dos attacks, while legitimate traffic is
in some sense random, in [9] Kolmogorov complexity
metrics, a measure of correlation in the strings form-
ing the packets, are used for DoS detection. This
technique is later improved in [32], where a differ-
ent Kolmogorov metric estimate, which measures the
correlation between the first and second halves of the
strings is proposed and the fluctuations of the Kol-
mogorov complexity differentials are evaluated. An-
other paper which suggests the use of signal process-
ing techniques is [23] where single and multi-source
DoS attacks are classified using the information of
packet header content, ramp-up behaviour and spec-
tral content.

The Cumulative Sum (CUSUM) algorithm which
is a change point detection algorithm applicable for
detecting sharp changes in variables, has been used
widely in DoS detection. It was first proposed for
DoS detection in [10], where TCP flags of the incom-
ing traffic were used as input. In [22], the perfor-
mance of the CUSUM as a SYN-flood DoS detector
is evaluated in terms of detection probability, false
alarm ratio, and detection delay.

Since the energy distribution of normal traffic is
known to be relatively stationary, while an attack



usually results in changes in the energy distribution
variance, in [31] wavelets are used for computing the
variations in the energy distribution in the incoming
traffic. In another study that exploits energy content
[18], flat energy bursts in the traffic are determined
with the continuous wavelet transform.

Here, we attempt to bridge these two general direc-
tions of DoS detection, machine learning and infor-
mation gathered with statistical methods. We have
built a system which uses several statistical features
deemed in the literature as most significant for a DoS
attack, and combines the individual decisions in a
machine learning fashion. We present and compare
seven different implementations of it, which combine
multiple Bayesian classifiers and the random neural
network (RNN). Bayesian classifiers have been used
before for DoS detection [13], but applied only on
the rate of appearance of specific flags in the pack-
ets’ headers, and in [36], where hypothesis testing
was used on the spectral analysis of bitrate to detect
only one very specific type of attack. In our work we
present a more general approach which aggregates
likelihood estimation of heterogeneous statistical fea-
tures and combine them in a neural network struc-
ture.

The random neural network (RNN) introduced by
Gelenbe [2] is an alternative neural network model
based on the spiking behaviour of the biological neu-
ron instead of the classical approaches which assume
analog transmission of signals. In this paper, we ex-
ploit the capability of the RNN to model the excita-
tory and inhibitory interactions among its inputs for
the case of malicious incoming traffic in a network. In
fact, the experiments we conduct also exploit a RNN-
based networking protocol, the Cognitive Packet Net-
work (CPN) [24], which is an autonomic Quality of
Service (QoS)-driven routing protocol. In CPN each
flow specifies the QoS metric that it wishes to opti-
mise, and data payload is carried by source routed
“dumb packets” (DPs), while “smart packets” (SPs)
and “acknowledgment packets” (ACKs) gather and
carry control information which is used for decision
making. In CPN, each flow specifies its QoS require-
ments in the form of a QoS “goal”. SPs associated
with each flow constantly explore the network and
obtain routing decisions from network routers based
on observed relevant QoS information. At each CPN
node, the SPs use a local reinforcement learning algo-
rithm based on measurements collected by previous
SPs and ACKSs, to elicit a decision from the node for
the next hop to travel to. Here, CPN uses the RNN
because it has a unique solution to its internal state

for any set of “weight” and input variables. At each
node there is a separate RNN for each QoS class and
destination, and for a given QoS class, a specific neu-
ron of the corresponding RNN is associated with a
specific output link of the node. When a SP reaches
the destination node of the flow, an ACK packet is
generated and returned to the source according to the
opposite path traversed by the SP. When the ACK
reaches the source, the the reverse of the route that it
used is stored for subsequent payload of dumb pack-
ets (DPs) which will be source-routed to the destina-
tion. The performance of the CPN routing protocol
has been thoroughly investigated in [7, 8, 25]. In our
experiments we use the CPN to ensure that the traffic
arrives to their destination quickly using the optimal
routes.

The rest of this paper is structured as follows. In
section 2 we give a brief summary of the Bayesian de-
cision theory as applied to our two-class pattern clas-
sification problem of distinguishing between normal
and DoS traffic. We continue in section 3 with a de-
tailed description of our choice of input features, and
in section 4 with offline statistical information gath-
ering. Section 5 presents the core of the detection
technique, including the decision taking process and
the methods for the fusion of the information gath-
ered from the individual features. Then, section 6
contains the performance evaluation of our detection
mechanism in a networking testbed and we conclude
in sections 7 and 8 with a discussion on flash-crowds
and our final remarks.

2 Multiple Bayesian Classifiers
in DoS Detection

As mentioned earlier, the task of DoS detection can
be formulated as a pattern classification problem,
where the observed traffic is to be classified as nor-
mal or attack traffic. The Bayesian Decision theory
is a basic approach used in pattern recognition prob-
lems. It assumes the availability of probabilistic de-
scriptions of the underlying features of a problem and
aims to find a decision rule which would minimise the
risks encountered by the decision taking process [6].
For a two-category classification problem, let us as-
sume we can measure an observation value x for a
certain feature, and we have to decide whether the
observed data point falls into the normal (wy) or
DoS (wp) category. We can proceed as follows ac-
cording to Bayesian decision theory:



decide wp if P(wplx) > P(wy|x); otherwise wy

where P(wy|z) and P(wpl|z) are the posterior
probabilities. For evidence f(z) of the specific fea-
ture, and prior probabilities P(wy) and P(wp), the
joint probabilities according to Bayes rule become:

flwn,z) = P(wn|z) f(z) = f(z|lwn)P(wy)
f(wp,z) = P(wplz)f(x) = f(x|wp)P(wp)

Since the evidence f(x) is only a scale factor and
can be neglected in computations, we get:

decide wp if f(z|wp)P(wp) > f(x|wn)P(wn); otherwise wy

Now we can compute the average risk R, incurred
by the costs c;;, the cost of deciding in favour of class
i, represented by subspace 7;, when j is the actual
class of the data point. For our two-category classi-
fication problem, the average risk is evaluated as:

R:cDDP(wD)/ f(x|wD)dJ:+cNNP(wN)/ f(zlwy)dz
D TN

+cNDP(wD)/ f(x|wD)dx+cDNP(wN)/ f(zlwy)dz

Above, since the first two terms represent cor-
rect decisions, we assume cpp < cyp and cyny <
cpy. Also, 1 = rp +ry and [ f(z|lwp)dz =
[ f(zlwy)dz = 1. So, the average risk is derived
as:

R=cppP(wp) +cnnP(wn)+

In our DoS detection mechanism, we monitor the
incoming traffic to measure various features for deci-
sion taking and we utilise multiple Bayesian classifiers
to take individual decisions for each of the input fea-
tures. The collected information is then combined in
a fusion phase to yield an overall decision about the
traffic. We have used a likelihood averaging method
and implementations of two different architectures
(feedforward and recurrent) of the RNN to compare.
In the following sections we present our approach,
including the selection of the input features, offline
statistical information gathering and information fu-
sion for the final decision taking.

3 Selecting the Input Features

For any pattern classification problem, the selection
of useful and information bearing input features con-
stitutes a significant part of the solution. In our
scheme we have used the features described below
for a generic description of the monitored traffic. Our
motivation behind this choice was to try to capture
both the instantaneous behaviour and the longer-
term statistical properties of the traffic, and also
to employ input features which were easily measur-
able or calculable without high computational cost.
Since the goal of the attacker is to deny or degrade
the service for legitimate users by overwhelming ei-
ther the processing or the networking resources of a
victim network, a DoS detection mechanism should
not further aggravate this condition with consider-
able overhead. Being able to measure them quickly
is also a factor, since the faster detection decisions
are taken the easier it is for the classification and
response mechanisms to counter the attack.

/ [P(wn)(con—cnn)f(@lwy)—P(wp)(enp—cpp)f(zlwp))de ® Bitrate. An unexpectedly high rate of incoming
TD

Since the first two terms are fixed, to minimize R,
we must ensure that P(wp)(enyp — epp)f(x|wp) >
P(wn)(epn — enn) f(z|wy), which is equivalent to:

f(@lwp)
Falwon) ~

P(wn)(¢pn — enn)
P(wp)(enp — ¢cpD)

Hence, the practical utilisation of Bayesian classi-

fiers in the two-category classification problem entails

evaluating the likelihood ratio A(z) = %ﬂgig

P(wn)(epN—cnn)
P(wp)(cnp—cpD)’
and z is assigned to category wp if A(z) > T, or to

wp otherwise.

and

comparing it with a threshold T' =

traffic is by far the most conspicuous indicator
of a flooding DoS attack. Similar measurements,
such as the number of packets per flow are often
used in detection mechanisms [15].

e Increase in Bitrate. Another obvious char-
acteristic of DoS attacks is the sudden and sus-
tained rate of increase of the bitrate of the in-
coming traffic. For example, flooding attacks
start with a long period of increasing bitrate,
while in pulsing attacks there are consecutive pe-
riods of increasing and decreasing bitrate.

e Entropy. If the data has a probabilistic descrip-
tion, e.g. in terms of probability distribution



functions, the entropy will be inherently related
to the randomness or uncertainty of information
in the data. It has been reported in the technical
literature that the entropy contained in normal
internet traffic and traffic under DoS attack dif-
fer significantly [12]. In our work, we compute
the entropy of the value of the incoming bitrate
at the nodes we monitor according to [1]:

E=-— Z filogf;

where f; are the histogram values obtained for
the bitrate, as explained in Section 5. This is
expected to yield a higher value when the prob-
ability distribution expands over a wider range
of values, indicating an increase in uncertainty.

Hurst Parameter. Another statistical at-
tribute which exhibits different behaviour for
normal and attack traffic is the self-similarity.
It has been studied in detail in [34] that the self-
similarity properties of normal and attack traffic
are distinctively different. Hurst parameter is an
indicator of the self similarity of traffic and can
be used in DoS detection. For example, Xiang et
al. [20] use the variations of the Hurst parameter
of the number and the size of packets to detect
attacks. In our approach we compute the actual
value of the Hurst parameter for the incoming
bitrate, for which we have used the (R/S) anal-
ysis, as described in [21]. If x is the bitrate of
the incoming traffic, n is the observation time,
and N is the total number of observation points,
then (R/S) is given by:

The Hurst parameter and (R/S)y are related
by (R/S)ny = e¢N | which for ¢ = 1 becomes
H =logn((R/S)N)-

Delay. A natural consequence of high bitrate
and building up of congestion is the increase in
the packet delays. Still, to our knowledge it
has not been used before as an attack indica-
tor. For the fastest and least invasive way to

detect changes in the delays, the node we mon-
itor sends constantly packets at a very low rate
to all its direct neighbours. By measuring the
average round trip time (RTT) for the acknowl-
edgments to return, we have a clear indication
of the congestion near the node.

e Delay Rate. As with bitrate, depending on the
type of the attack and for its whole duration, the
packet delays are expected to undergo significant
changes. We are not aware of existing work using
the change of the delay as a detection feature,
but we consider it a natural next step.

4 Offline Statistical Informa-
tion Gathering

The probabilistic description of the network is ac-
quired in the statistical information gathering phase
which mainly consists of two steps. First, the prob-
ability density function (pdf) values are obtained for
both normal and attack traffic and then the likelihood
ratios are calculated based on the pdfs. At each vic-
tim candidate of the network, the incoming traffic is
analysed offline to collect this statistical information.
Estimates of probability density functions for both
normal and attack traffic are computed for each of
the input features described in Section 3. The pdfs
are denoted by freature(®|wn) and freqture(z|wp),
where feature is replaced by bitrate, increase in bi-
trate (bit acceleration), entropy, Hurst parameter,
delay and delay rate respectively, x is the measured
value of the feature from the available traffic data,
wy denotes the normal traffic and wp the DoS traffic.
We have used the histogram method to compute the
estimates of the probability density functions. With
this method the range of observable values for a vari-
able is divided into a number of intervals and for each
interval, we compute the ratio of the number of data
points that fall into it to the total number of data
points available [6].

In the second step, the probability density function
estimates obtained above for each input and for both

traffic types are used to compute the likelihood ra-
ffeature(zle)

freature(Tlwn)”
These likelihood ratios are later used in real-time by

the decision taking mechanism (Section 5). Likeli-
hood ratios, actual values and quantised actual val-
ues (histogram category values) of the features are
used also in the training of RNNs.

ti08 { feqrure Of each feature: lfeqrure =



5 Detection decision

The statistical information collected about the net-
work off-line is utilised during the decision taking pro-
cess, which comprises two steps. In the first step,
decision for each feature is given individually, and
the individual decisions are then combined in an in-
formation fusion step to yield a final outcome for
the state of the traffic. The numerical values of the
features are measured in real-time and a likelihood
value for each feature is computed. Then, these val-
ues are aggregated in a higher-level decision taking
step, which provides a compensation for possible er-
rors, and should decrease the rate of false alarms and
missed detections. As a first approach to take into ac-
count all features, we have measured an average of the
individual likelihoods. Then, for a more accurate ap-
proach, we employed a feedforward (f-RNN) and a re-
current (r-RNN) architecture of the RNN, with input
the individual likelihood values, histogram category
values and actual values, for a total of seven different
implementations of our generic detection technique.

5.1 Average likelihood estimation

An uncomplicated and easily applicable method to
combine the individual likelihoods is to evaluate the
arithmetical average of them given by:

lbit + lacc + lentr + lHurst + ldelay + ldelrute
total number of features

lfinal =

ltinar, which has a value between 0 and 1 gives an
overall likelihood for the existence of a DoS attack
at the victim candidate we monitor. The decision on
whether the incoming traffic is normal or DoS is then
taken by comparing this value to a specified thresh-
old, which may or may not be dependent on the im-
pact that the DoS attack is expected to have on the
victim.

5.2 Combining statistical information
with the RNN

The random neural network (RNN), proposed by Ge-
lenbe [2] is a computational paradigm, inspired by
the random spiking behaviour of the biological neu-
rons. The RNNs are computationally efficient struc-
tures and they represent a better approximation of
the true functioning of a biophysical neural network,
where the signals travel as spikes rather than ana-
log signals.The strong analogy between queuing net-
works and the RNN make it a powerful tool for deal-
ing with problems where excitation and inhibition

among problem inputs are prevalent. The RNN has
been successfully applied in various problems, includ-
ing image processing [4], pattern recognition [35], and
optimisation [3].

In the RNN [2], neurons exchange positive and neg-
ative impulse signals, with unit amplitude, which rep-
resent excitation and inhibition respectively. Neurons
accumulate signals as they arrive and positive signals
are cancelled by negative signals. Neurons may fire
if their potential is positive, to send signals either to
other neurons or outside the network. The poten-
tial of neuron ¢ at time ¢, also called as the state of
the neuron, is denoted by k;(t). The state k;(t) may
decrease if the neuron emits a signal, an inhibitory
signal is received from another neuron in the net-
work or if an exogenous inhibitory signal is received.
Similarly, k;(t) increases if an exogenous excitatory
signal or an excitatory signal from another neuron in
the network is received. In RNN a signal may leave
neuron i for neuron j as a positive signal with prob-
ability p*(4,7), as a negative signal with probability
p~(i,7), or may depart from the network with prob-
ability d(i), where p(i,j) = p*(i,7) + p~(i,j) and
Zp(i,j) + d(i) = 1. Positive and negative weights

J

are computed by:

w(j,i) = r(i)p*(i,5) 2 0
w™ (4, 4) = r(@)p~(i,4) =2 0
where r(4) is a Poisson firing rate, with independent

identically exponentially distributed interimpulse in-
tervals:

r(@) = 3wt (i) +w (i)

The weights w may be interpreted in a way anal-
ogous to the weights in artificial neural networks
(ANNS), but they actually represent excitatory and
inhibitory signal emission rates.

The steady state probability that the neuron i is
excited is defined as:

q; = limy_ oo Pr[k;(t) > 0]
(1)

ggg , where

N(i) = quwﬂj,i) + A(i)

It is computed to be ¢; =

D) =)+ Y gw™ (G:1) + A()



with A(7) and A(¢) denoting the rates of exogenous
excitatory and inhibitory signal inputs into neuron <,
respectively.

RNNs can be designed in both feedforward and
recurrent architectures (f-RNN and r-RNN). In our

work we have implemented both architectures for the, s in sirate

fusion of inputs to compare the results. The structure
of the -RNN we have designed is shown in Fig. 1.

Bitrate

Increase in Bitrate

Entropy
Hurst
Output layer
Delay @
Delay Rate ®
N—— e’
e
Hidden layer

Input layer

Figure 1: Random Neural Network in the feedforward
architecture used in the experiments

It consists of an input layer of six nodes, a hid-
den layer with twelve nodes and an output layer with
two nodes. Each output node stands for a decision;
attack or not. The final decision about the traffic
is determined by the ratio of the two output nodes.
The r-RNN structure we have designed is depicted in
Fig. 2. It consists of two layers, an input layer with
twelve nodes and an output layer with two nodes. In
the input layer, there are two nodes for each input
variable; one for the excitatory signals and one for
the inhibitory signals. Each node sends excitatory
signals to nodes of the same type and inhibitory to
the rest. At the output layer, one node sums up the
excitatory and a second the inhibitory signals. Just
as in the feedforward case, the decision is given by
computing the ratio of the two output nodes.

For the implementation of the RNNs, we have used
software developed in [42]. For both f-RRN and r-
RNN we have used three different types of input:

e Likelihood ratios. The likelihood ratios
lteature for the six input features are obtained by
measuring their real-time values and resorting to
the likelihood ratio values stored during the of-

Bitrate { zg
R
—
‘@

Hurst s
Delay {.0®
Delay Rate { :;g

N’

Input layer

Figure 2: Random Neural Network in the recurrent
architecture used in the experiments

fline statistical information gathering phase de-
scribed in section 4.

e Histogram categories. These refer to the his-
togram intervals used to estimate the pdfs de-
scribed in section 4 and they essentially quantise
the available values.

e Actual values. For the sake of comparison we
have also investigated the case in which the ac-
tual values of the input features are directly fed
in the two types of RNN.

6 Experimental Evaluation

We have implemented and evaluated our detection
mechanism on a networking testbed in our labora-
tory, which consists of 46 nodes connected with 100
MBits/sec links according to the topology of Fig. 3.
Instead of following a random topology, we chose to
recreate a representative academic one, which is the
SwitchLAN ! backbone network topology. We chose
a specific node to play the role of the victim while
the rest of the nodes send traffic to it according to a
variety of datasets that we tried. In our experiments,
we utilised traffic traces of DoS attacks designed both

IThe SwitchLAN network provides service in Switzerland
to all universities, two federal institutes of technology and the
major research institutes.



in our laboratory and by other academic sources: (i)
normal traffic, (ii) attack traffic of our design slowly
increasing, (iii) attack traffic downloaded from [38]
representing rapid flood, and (iv) attack traffic down-
loaded from the same source representing a pulsing
attack, with traffic rates reciprocating between very
low and very high values, which makes it challenging
to detect.
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Figure 3: The network topology used in the experi-
ments

We have used two types of RNN architecture, f-
RNN and r-RNN, with three types of input for each
feature: likelihood ratios, quantised histogram cat-
egory values and actual values. Together with the
method of simply averaging the likelihoods (for vari-
ous values of decision threshold), we have tested a to-
tal of seven variations of the detection mechanism on
our four traffic datasets. Each experiment lasts 120
sec. In the attack cases, to illustrate the difference
in the traffic and to see graphically the operation of
the detection mechanism, we start with normal traffic
on which we superimpose attack traffic for the time
period between 50s and 100s. The last 20s the net-
work returns to its normal operation, as the attack
sources stop sending traffic to the victim. We used a
sampling time of 2 sec.

Table 1 summarises the performance results of the
detection mechanism in terms of average correct de-
tection, false alarm rates and detection delays, while
figures 4-7 show the real-time detection decisions as
time progresses. The y axis in these graphs is in log-
arithmic scale with the detection metric being the
ratio of the two output RNN nodes as described in
section 5. The decision threshold over which an at-
tack is signalled is the RNN output ratio of 1. The
closer the detection ratio is to 1 the less certain the
mechanism is of its detection decision.

The results of Fig. 4 show that for normal traf-
fic the RNNs signal correctly the absence of attack
throughout the duration of the experiment, although
not with the same degree of certainty, apart from
the case of -RNN with actual values which incor-
rectly signals an attack. Figures 5-7 correspond to
the three attack datasets that we used. All three im-
plementations of the RNN detect the attacks quickly
and have minimal missed detections and false alarms.
The r-RNN with actual values had high detection
rates, no false alarms and the lowest detection delay
for all datasets, but also provided the lowest degree
of certainty for its decisions by yielding values close
to 1. The use of the quantised values of histogram
categories appear to improve the correct detection
rate even further, but at the expense of a few false
alarms, while the likelihood value methods for both f-
RNN and r-RNN performed at about the same level
in both respects, but took a little longer to detect
the pulsing attack (dataset3). We have also include
the results for the average likelihood method, which
performs adequately for all datasets, but detects the
attacks with longer delay (up to 12s for dataset3).

We have also plotted some representative ROC
curves for the seven variations, based on one of the
datasets (Fig. 8). The ROC curves are graphs of
false positives versus true positives, to which we have
referred in this paper as false alarms and correct de-
tections respectively. In an ideal system, the ROC
curve should rise immediately from (0,0) to (0,1) and
continue to (1,1). We see this behaviour in all seven
variations, with a slight advantage of the r-RNN with
histogram categories and f-RNN with likelihood val-
ues.

Looking at the overall performance of our detection
mechanism, it emerges that apart from the f~RNN
with actual values implementation, all methods are
quite powerful detectors of attack traffic. In general,
the r-RNN implementations are observed to be more
accurate and slightly faster.

7 Discussion on flash-crowds

The flash crowd is a situation in which there is an
unusually sharp increase in the number of legitimate
visitors to a website due to some significant event.
Although all traffic may be legitimate, the conse-
quences are very similar to those of DoS attacks, such
as network outages and dramatically reduced quality
of service. In this paper we have not presented any
work on flash-crowds. We could, however, discuss



False  Alarm Correct  detection Detection  Delay (s)

Detection implementation Datal Data2 Data3 Datal Data2 Data3 Datal Data2 Data3
Avg. likelihood (threshold 0.4) 0.11 0.06 0.03 0.92 0.96 0.80 2 0 12
Avg. likelihood (threshold 0.5) 0 0.03 0 0.80 0.88 0.76 4 2 12
f-RNN likelihood values 0.17 0.11 0.08 0.96 0.96 0.84 2 0 12
f-RNN histogram categories 0.03 0.11 0.03 0.92 1 0.80 4 0 8
f-RNN actual values 1 1 1 1 1 1 0 0 0
r-RNN likelihood values 0.06 0.11 0.03 0.96 0.96 0.80 2 0 12
r-RNN histogram categories 0.06 0.06 0.06 0.96 1 0.88 2 0 8
r-RNN actual values 0 0 0 0.92 1 0.84 2 0 6

Table 1: Comparison of the different detection implementations, in terms of false alarm and correct detection

rates

briefly how the differentiation between “flash-crowd”
and DoS attack could be incorporated in the detec-
tion mechanisms we presented.

The flash-crowd can be added as a third category in
our Bayesian classification problem. Then, the learn-
ing process of the detection mechanism and the train-
ing of the RNN will need sets of three types of traffic
to operate; normal, attack and flash-crowd. In addi-
tion to the six inputs, the simplest new RNN struc-
ture would need at least eighteen neurons in a hidden
layer and three outputs.

A second option would be to first detect the ex-
istence of an attack in the ways presented in this
paper, and then trigger a second separate mecha-
nism, which should attempt to distinguish between
the two by actively challenging the authenticity of the
clients and exploiting their fundamental difference:
flash crowd flows are generated by human users, while
attack flows are generated by compromised comput-
ers. Thus, Reverse Turing tests have also been sug-
gested to counter DDoS attacks against webservers
[11]. The option of using our detection mechanisms
to detect suspicious traffic and then try to actively
distinguish between human-generated and computer-
generated traffic may be more widely useful, since it
does not depend on the statistical properties of the
flash-crowd, which an attacker can easily mimic.

From the point of view of the users of the net-
work, however, it is not important whether the out-
age they are experiencing is maliciously intended or
a result of a flash-crowd. In either case, the detec-
tion mechanism should trigger a classification and re-
sponse mechanism to retain the quality of service of
the legitimate users. We have covered these elements
of the DoS defence architecture in our previous pa-
pers [27, 37].

8 Conclusions

We have described the design of a generic DoS detec-
tion scheme which reaches detection decisions accu-
rately and in a timely fashion, by employing multiple
Bayesian classifiers and RNNs. We first select input
features to capture both the instantaneous behaviour
and the longer-term statistical properties of the traf-
fic and in an offline information gathering step we
obtain the probability density function estimates and
evaluate likelihood ratios. Then, during the decision
taking step, we measure the features of the incoming
traffic to reach detection decisions according to each
feature. These are combined into an overall detec-
tion decision using both feedforward and recurrent
architectures of RNN.

There are two major weaknesses in current DoS
research, namely the lack of standards of evaluation
for the detection and defence methods and the scarce
information on modern types of attacks. Launching
real attacks against real networks with real legitimate
users, is impractical, and this leaves the researchers
with the option of less dependable datasets, e.g. sim-
ulated or acquired from outdated traffic traces. A
pragmatic solution to these problems would be to or-
ganise close cooperation of the research community
with organisations which are frequently under attack,
such as e-commerce and online betting websites. Ac-
curate and up-to-date datasets will help distinguish
the best defence approaches in an unbiased manner
and will prompt further research and improvements
in detection and defence mechanisms. Until these
goals are achieved, however, researchers will have to
either use the existing obsolete datasets or create
their own. In this work we chose to do both, but
for the reasons we explained we cannot argue on how
these datasets compare against others and how re-
alistic they are. We can, however, argue that our
investigation method, using a real large networking
testbed, instead of simulation, should provide a sig-




nificant degree of realism. The experiments we con-
ducted showed that our mechanism is able to detect
DoS threats in a timely fashion and can even very
quickly identify the end of an attack, at least for the
range of attacks that we investigated.

This paper presents part of our ongoing work to de-
velop a complete DoS defence architecture covering
all three aspects mentioned in section 1. In [27, 37|
we detailed our approaches on classification and re-
sponse, which naturally we intend to combine with
the work presented here. Also, a way to improve the
detection performance of our current mechanism for
each individual node employing it is by introducing
cooperation between the various nodes involved in
the DoS defence. This we have already achieved in
our work for classification and response, and would
be particularly useful for accurate detection too.
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