Performance evaluation of cyber-physical
intrusion detection on a robotic vehicle

Tuan Phan Vuong, George Loukas, Diane Gan
Department of Computing and Information Systems
University of Greenwich
London, UK
Email: (t.p.vuong, g.loukas, d.gan)@gre.ac.uk

Abstract—Intrusion detection systems designed for con-
ventional computer systems and networks are not necessarily
suitable for mobile cyber-physical systems, such as robots,
drones and automobiles. They tend to be geared towards
attacks of different nature and do not take into account
mobility, energy consumption and other physical aspects
that are vital to a mobile cyber-physical system. We have
developed a decision tree-based method for detecting cyber
attacks on a small-scale robotic vehicle using both cyber
and physical features that can be measured by its on-board
systems and processes. We evaluate it experimentally against
a variety of scenarios involving denial of service, command
injection and two types of malware attacks. We observe
that the addition of physical features noticeably improves
the detection accuracy for two of the four attack types and
reduces the detection latency for all four.

Index Terms—Cyber-physical systems; Mobile robots; In-
trusion detection; Decision tree; Cyber-physical attack; Net-
work security; Denial of service (DoS); Command injection;
Malware; Detection Latency

I. INTRODUCTION

Robotic vehicles, unmanned aerial vehicles (UAVs)
and automobiles feature a tight coupling between their
cyber and physical properties. We use the term cyber to
refer to their computation and communication processes,
and physical to their mobility, power consumption and
any other physical manifestation of their operation. Our
focus here is on examples of cyber-physical attacks,
where a security breach in cyberspace has an adverse
effect in physical space [1] (in the vehicle’s physical
function). Examples may include causing a vehicle to
stop, a UAV to land prematurely [2], or its controls to be
hijacked, as in the case of Maldrone [3], an experimental
backdoor server for quad-copter drones, which kills the
autopilot, takes control and can spread to other drones.
Earlier examples include the work of Checkoway et al.
[4] on a malware-infected audio file that was able to
allow the researchers remote control of an automobile’s
engine control and braking system, and the work of
Kerns et al. [5] in altering a vehicle’s trajectory via

This work was supported by the UoG VC’s PhD grant “Cyber-
physical security of robotic vehicles”

GPS spoofing. Beyond these organised research efforts,
there are also hacking competitions with time-restricted
challenges for hijacking vehicles, such as the Tesla S
sports car hijacking contest reported in [6].

We have previously identified that, depending on at-
tack type and implementation approach (including fail-
safe system and other automated behaviours), a robotic
vehicle under attack on its communication channel can
misbehave. It may head towards the wrong direction,
be delayed, be forced to shut down, continue blindly,
physically jitter [7] etc. Here, we take a more detailed
look on the physical impact of different cyber attacks,
including denial of service, command injection, and two
types of malware infection. We also explore the feasibil-
ity of an intrusion detection system that takes into ac-
count physical input features, in addition to cyber input
features, to detect these attacks reliably and rapidly. Our
focus is on input features that can be measured by the
robotic vehicle’s resource-limited on-board components
and monitoring processes. The aim is to provide the
vehicle with the capability to detect attacks without
relying on the knowledge or processing of any external
system.

II. RELATED WORK

Intrusion detection in cyber-physical systems is a rel-
atively new area of research [8], which tends to focus
on industrial control systems, such as programmable
logic controllers (PLCs) and supervisory control and
data acquisition (SCADA) systems. The range of related
research that is applicable to robotic vehicles is still
rather limited. One approach that has been proposed is
to base the detection on whether sensor values collected
and utilised by a robot are realistic. For instance, the
intrusion detection system of the iRobot Create robotic
platform needs to first determine what sensor values
are “normal” and from these try to determine whether
network traffic is suspicious [9]. In most cases, some
form of network monitoring for detecting attempts for
control hijack or modification is necessary, whether host-
based as in the robotic surgery arm discussed in [10], or a

hybrid host-based and network-based, as in [11]. In [12],
detection is conducted both locally and collaboratively
within a group of autonomous robots, by taking into
account reputation, behaviour scores and distance. For
distributed systems, which include multiple mobile ele-
ments, as in emergency response or battlefield situations,
one can use a voting-based system, such as the one
proposed in [13].

In general, detection can be categorised as behaviour-
based, typically independent of type of attack, e.g. based
on Petri Nets [14], or based on the knowledge of what
impact a particular attack has on a particular robot, as
in [7]. Our focus here is on a standalone robot, which
does not have the opportunity to share information or
collaborate with other robots to detect attacks. Examples
could include remote-controlled standalone robots for
reconnaissance, surveillance, rescue or bomb disposal
missions. As a first attempt, we opt for a knowledge-
based approach with supervised training where the
robot learns a variety of attack types and is then chal-
lenged to detect attacks of similar nature. That is because
in the first instance our aim is to determine whether
an attack can indeed be detected reliably by the robot
itself and whether the combined use of both cyber and
physical input features is beneficial. In the near future,
we will also develop behaviour-based approaches for
comparison.

III. TESTBED AND EXPERIMENTAL SETUP

The testbed for our development and experimentation
is a four-wheel-drive robotic vehicle (Figure 1) controlled
via an on-board Intel Atom computer running the Linux
operating system and an Arduino micro-controller for
driving the motors. The robot also carries a camera with
pan and title functionality for situational awareness and
remote navigation. The robot and its camera can be
controlled remotely via an Ethernet cable or Wi-Fi, by
relaying commands received over a TCP socket on the
robots control board. Standard magnetic encoders fitted
to the two rear wheel motors provide information on the
angular position of each wheel. The difference between
two consecutive measurements is representative of its
speed. Figure 2 presents the components of the robot in
more detail. It also shows the input features collected for
the purpose of intrusion detection, identifying also the
components from where they are collected.

Different attacks have different impacts on the com-
putation, communication and physical operation of the
robot. In particular the physical impact is not only an
adverse effect of a cyber-physical attack, but also an
opportunity. We argue that by monitoring these physical
manifestations it is possible to improve the performance
of a system designed to detect cyber attacks against a
robot. To test the feasibility of this, we need to simplify
the experimental conditions. First of all, the robot does
not move in a real environment, but is placed on a stand

Fig. 1. Photo of the robotic vehicle

[POW]Watts [ACCIRMS(X,Y,Z)

(T SENSING | tricro
WattsUP |[* |accelerometer
usB

energy meter Logitech |camera Pan/tilt

' ——+| €525 USB | Pan Servo Hs-422
Electronic USB | camerg [Tilt servo Hs-422
Compass o

12C

ACTUATION

IG32P 24vDC 190 RPM
Gear Motors (x4)

_ 1 J

Robo Elaw
2x15A E

motor controller

Quadrature
Encoders (x2)

[ENC]Diff_L

LV-MAXSonar-
EZ1 Ultrasonic

RS232

=

Basic Micro
ARC32 % L

microcontroller

=
USB
¥
Intel AformiD525 [CPU]Total%
| sspoczonyx32.68 T
| 3| Kingston 2GB DDR3 1066 Une kA
*| Pico-PSU-80-WI-32V [NET]RxKBTot
Wireless B/G/N USB [NET]TxKBTot
Fedora Linux Unit
KCONTROL
. WiFi Ethernet cable
(JFrunction Remate PC
I:l Device Cit Interface program
@ reature REMOTE OPERATION

Fig. 2. Detailed diagram of the testbed. The input features used for
the detection are shown in black background

during the experiments. This is to reduce the impact of
any unrelated environmental effect, such as friction, and
also helps with repeatability of scenarios in a consistent
manner. Also for consistency across different scenarios,
the robot is powered via DC power supply rather than
its on-board battery pack. This ensures that the variable
quality of battery packs does not affect the measure-
ments, especially with regards to the performance of the
magnetic encoders.

A. Attack vectors

As representative of a wide-range of possible attacks
against a robotic vehicle, we have conducted experi-
ments where the robot is under denial of service (DoS)
attack, command injection attack, and two kinds of
malware attack, one targeting the CPU and the other
targeting the network (NET), as shown in Table I, which
also summarises the primary physical impact observed
during each one.

TABLE 1
EXPERIMENTAL SCENARIOS

S# Type

S1 DoS

S2 | Command Injection
S3 Malware (NET)
S4 Malware (CPU)
S5 Normal operation

Impact observed
Inconsistent stops
Frequent consistent jittering
Frequent consistent stops
No clear physical effect
No adverse effect

1) Denial of Service attack (DoS) (51): Here, the aim of
the attack is to flood the robot’s network interface with
TCP traffic. The attack is a simple denial of service attack
at a rate of approximately 8.7 MBit/s. The primary aim is
to disrupt the communication between legitimate opera-
tor and robot. Intermittent connectivity causes the robot
to trigger temporarily its fail-safe mechanism, which is
simply to stop, and then resume its movement.

2) Command injection attack (S2): The robot receives
commands from its legitimate operator to move forward,
and at the same time receives rogue “stop” or “turn left”
commands from an attacker.

3) Malware attack against network (Malware (NET))(S3):
A piece of malware disrupts the network communica-
tion by causing a delay in the network. It utilises the
Linux kernel’s network scheduler to modify the network
traffic control setting. As a result, the robot’s movement
becomes erratic with frequent stops during the attacks.

4) Malware attack against CPU (Malware (CPU)) (54):
A piece of malware consumes processing through a
resource-demanding calculation. Unlike S1, S2 and S3,
in this case no obvious change in the robot’s physical
behaviour is observed.

5) Normal operation (55): Here, there is no attack. All
network traffic and applications running are legitimate.
They correspond to the camera feed transmitted to the
operator, as well as the operator’s legitimate commands
to the robot.

B. Features

We focus on types of data that can be extracted by
a mobile cyber-physical system without considerable
overhead. We have identified eight input features, four
related to communication and processing, which we
refer to as the cyber input features, and four related to
the physical properties of the robot, which we refer to as
the physical input features. The attack label is the ground

truth for the scenario, which corresponds to whether an
attack really is present or not at a specific point in time.

o Network Incoming: Received network traffic rates.

o Network Outgoing: Transmitted network traffic
rates.

e CPU: The total CPU utilisation.

o Disk Data: The rate of data being written to the
disk.

o Encoder: Represents the wheel speed;

o Accelerometer: Represents the vibration of the chas-
sis (using accelerometer measurements).

o Power: Corresponds to power consumption.

o Current: Corresponds to current.

o Attack label: This is the ground truth label, which
states whether there is an attack or not at a par-
ticular point in time. This is used to train the
intrusion detection system and also to evaluate its
performance.

IV. CYBER-PHYSICAL INTRUSION DETECTION

Our goal here is (i) to provide a light-weight in-
trusion detection mechanism that can detect a cyber
attack against a robotic vehicle using both cyber and
physical input features and (ii) to compare the effec-
tiveness of the intrusion detection against four different
cyber attack types: DoS, Command injection, Malware
against Network and Malware against CPU based on
a performance metric including detection latency. As a
lightweight approach, we used a decision tree learning
algorithm for automatically producing detection rules
that will be used by the robotic vehicle.

Attack No attack
detected detected

H

A\ N

Attack vectors

Cyber and physical N
input capturing

software

(Rule-based

Intrusion Detection
Classifier

Predictor

\
|

I

|

I

|

i

|

i

) T |

E iz deE Testing Validation | !
! data data |
: \/ / i
! i
! Feature extraction T |
1 A | !
' Synch ron|za?t|on AldEE : :
! Interpolation J '
\ ! !

Labelling
. FRAMEWORK DESIGN

Fig. 3. Intrusion Detection Framework

A high level overview of the system is illustrated
in Figure 3. Our framework design of the intrusion
detection mechanism aims to run on the actual robot
based on its own monitoring processes and components
without relying on any external system. We have opted
for a rule-based approach, because it is light-weight
at run-time. For the generation of the rules, we use a
decision tree machine learning algorithm for its speed

and simple construction. Machine learning is common in
intrusion detection systems for conventional computer
systems [15] (but still not for vehicles or other mobile
cyber-physical systems). Especially the C4.5 decision tree
algorithm has been used extensively to detect denial
of service and other attacks [16]. Here, we use the
improved C5.0 algorithm [17], [18], [19] with live data
collected from the robotic vehicle. Before applying the
C5.0 detection mechanism, we start with a data collection
and preparation phase (Section IV-A).

A. Data collection and preparation

For each cyber attack scenario shown in Table I,
the data for the cyber and physical input features are
captured from different locations within the architecture
(Figure 2) and at different points in time due to lack of
perfect synchronisation and different sample collection
periods (T) (see Table II). For example, the encoder value
is collected by monitoring scripts embedded within the
robot control unit, while Watts and Amps are measured
with the WattsUp device [20]. As a result, the data needs
to be processed to address the synchronisation difference
between the clocks of these different data collection
devices. Also, linear interpolation is used to address the
fact that different devices would collect data at different
time intervals. Figures 4, 5, 6 and 7 show representative
runs for each of the scenarios S1, S2, S3 and 54 using the
data after clock synchronisation and interpolation in R.
We set the “ground truth” label to true when there is an
attack and false when there is no attack. In total, the five
scenarios present 52,215 data points for each feature.

TABLE II
CYBER (C) AND PHYSICAL (P) FEATURES AND THEIR COLLECTION
PERIOD
Feature name | Description and Type (C/P) | Period (T)
RxKBTot Network receive (KB) C 1.0s
TxKBTot Network transmit (KB) C 1.0s
CPU Total CPU usage (%) C 10s
WriteKBTot Disk Write Data (KB) C 1.0s
DiffEncoderL. | Change in Left Encoder | P 30 ms
RMS Vibration of chassis P 20 ms
Watts Power consumption (W) | P 1.0s
Amps Electric Current (A) P 1.0s
Label Attack Flag (1,0) 1.0 s

B. Training, testing and validation data for each attack

As mentioned already, S5 corresponds to the normal
operation of the robot. Each attack (S1-54) includes both
the legitimate activities in the normal operation of S5 and
the illegitimate activity introduced by the particular at-
tack. For the purpose of training, testing and validation,
we split the data (Figure 3) into two sets with sample
size of:

e 80% for training and testing, of which the training

data is chosen randomly from the 70% of this divi-
sion, and testing is chosen from the remaining 30%.

Diff Encoder L WriteKBTot

= o] =]
£ o~
o !IO
e o
[50 100 180 200 50 100 180 200
Time(s) Time(s)
RMS TxKBTot
[aY] o __
gﬁi %: rp ‘—v - f’v—v
W 4
5o ==
= &
¥ol o] |] L I
° 50 100 150 200 0 50 100 150 200
Time(s) Time(s)
Watts RxKBTot
2 gi N Di T r
28] 28]
sl | NEE
[50 100 150 200 [50 100 180 200
Time(s) Time(s)
Amps CPU
o]~ A et Al ST 1
s8] fa
£ A W
ol || SO e Y |
SA) 50 100 150 200 0 50 100 150 200

Time(s) Time(s)

Fig. 4. The data for cyber and physical features collected during the
denial of service attack (S1). The overlaid frames denote the periods
of time that the denial of service attack is on.

Diff Encoder L WriteKBTot

@
fix}
X o

f=J

Unit
=20 20 60

[50 100 150 50 100 150
Time(s) Time(s)
RMS TxKBTot
g3 1
&2] 271
= |
ro| o | ||
= 2 -
50 100 150 50 100 150
Time(s) Time(s)

Watts

1] T

Watts
78 81 84
“\——‘\

KB
10 20 30
=
T
]
—
L |
—
= |
—
—

3 50 100 150
Time(s)

3 50 100 150
Time(s)

Amps CPU

40

% value
30

Amps

048 052

i v

a 50 100 150 a =0 0 150
Time(s) Time(s)

Fig. 5. The data for cyber and physical features collected during the
command injection attack (S2). The overlaid frames denote the periods
of time that the command injection attack is on.

e 20% for validation. This is holdout data that is not
seen by the training models.

C. Detection method

We have used the decision tree C5.0 package [21] in
R to generate the rule-based classifier. Each Decision
Tree model is fit by Quinlan’s C5.0 algorithm for each

Diff Encoder L WriteKBTot
] o
= o
£o Ca
o
B o
R 50 100 180 200 50 100 180 200
Time(s) Time(s)
RMS TxKBTot
o | —_—
3] 21 |
@ 2l
5]
¥ o =8
= 50 100 150 200 <9 50 100 150 200
Time(s) Time(s)
Watts RxKBTot
— Qg — — —
1 1L
o J
=y
(1:&0)7 LN\{\ W\ E]
= RN
L o
d 50 100 180 200 <0 5 100 150 200
Time(s) Time(s)
Amps CPU
] T s [T THI T T
98 ERN
E° | H
<o 23 L
=3 sl A an bl A i Al
SH) 50 100 150 200 [50 100 150 200

Time(s) Time(s)

Fig. 6. The data for cyber and physical features collected during the
malware attack against Network scenario (S3). The overlaid frames
denote the periods of time that the network malware is active.

Diff Encoder L WriteKBTot
2 = b
‘_‘F_ @ -
521 2.1
2 . ol
) 50 100 150 200 50 100 150 200
Time(s) Time(s)
RMS TxKBTot
© =
ERN i
2 mo |
®o -
2° J
£ SHInnm
o 50 100 15 200 <0 50 100 15 200
Time(s) Time(s)
Watts RxKBTot
g2 [T 4| es
z - X 4
sl 1 L] . o]
[50 100 150 200) 50 100 150 200
Time(s) Time(s)
Amps CPU
I Rd ™ T P[] R T T 1 T
s RAAARAA] = TINNT
Qo | = 1
£ To]
“‘D’M“LHL\NL,JHLJ =7 t L
=y v ol ot i 1] L
d 50 100 15 200 d 5o 100 15 200
Time(s) Time(s)

Fig. 7. The data for cyber and physical features collected during the
malware attack against CPU scenario (54). The overlaid frames denote
the periods of time that the CPU malware is active.

different training data as mentioned in Section IV-B. So,
it creates one model (one ruleset) for each attack type.
Then the intrusion detection classifier of each attack
is evaluated against the testing data and the validation
data separately. This evaluation is in terms of its ability
to correctly recognise the existence or absence an attack

at each point in time. A sample section of the decision
tree rules generated is shown in Figure 8.

Decision tree:

Amps <= 0.6098701:
t...Amps <= 0.5962737: 0 (9802/3)

Amps = 0.5962737:

I...Watts <= 92.19859: 1 (18)
watts > 92.19859:
f...WritekBTot <= 3.892:

wWritekBTot = 3.892:
1L..CPU == 2.032: 0 (4)
: CPU > 2.032: 1 (8)
Amps > 0.6098701:
f...Amps <= 0.613997:

I...Watts > 96.03431:
wWatts <= 96.03431:
... CPU == 3.376004:

0 (172)

0 (35

0 (9/2)
: CPU > 3.376004: 1 (155)
Amps > 0.613997:

I...Watts <= 97.85741: 1 (555)
wWatts > 97.85741:
...Watts > 98.1:

watts <= 98.1:
I...Watts <= 97.9:

I...WritekBTot <= 0.01599979:

WritekBTot > 0.01599979:

1 (545)

1 (42)
0 (23

Fig. 8. An example of the Decision Tree rules generated

V. EVALUATION

Choosing performance metrics for intrusion detection
in cyber-physical systems is not trivial, because their
priorities are different to those of conventional computer
systems. Here, we use the confusion matrix, receiver
operating characteristic (ROC) curves with its area under
the curve (AUC) and detection latency.

A. Confusion matrix

The confusion matrix relates to the number of errors in
the outcome of the intrusion detection. The rate of false
positives (FPR = FP/(FP 4+ TN)) and false negatives
(FNR = FN/(FN + TP)) with regards to the “ground
truth” and the overall accuracy rate (ACC = (TP +
TN)/(TP + FP + TN + FN)) are appropriate for the
evaluation of the performance of our system. As cyber-
physical systems are still not common targets of attacks,
they are likely to be the target of non-standard and
possibly zero-day attacks. This makes FNR important.
In fact, FNR may also affect the detection latency.

As mentioned in Section IV-B, the experiment con-
sisted of building four different detection models for the
different attack types.

TABLE III
DETECTION RESULTS USING ONLY CYBER INPUT FEATURES
Test Validation
Attack ACC% | FPR% | FNR% | ACC%
DoS 99.45 15.77 7.26 90.47
Command inj. 97.58 31.79 22.34 72.80
Malware (NET) | 94.99 21.42 18.99 79.70
Malware (CPU) | 97.03 21.16 6.76 85.31

Tables IIl and IV show high accuracy rates above
94% for testing data, which reflects the “local-optimal”

under the curve (AUC) of the ROC curves is a metric to
compare the quality of different binary classifier models.

TABLE IV
DETECTION RESULTS USING BOTH CYBER AND PHYSICAL INPUT
FEATURES
Test Validation

Attack ACC% | FPR% | FNR% | ACC%
DoS 99.84 10.76 41.44 66.70
Command inj. 99.53 29.60 5.74 81.99
Malware (NET) | 99.20 25.70 11.31 80.92
Malware (CPU) | 99.72 5.43 26.18 85.24

feature of the decision tree C5.0 algorithm. This is be-
cause the training and testing data are sharing very
similar characteristics as they are from the same set
(but different samples). So, the testing data is the ideal
condition where the attack observed is very similar to the
attack the system has been trained on. The results using
validation data correspond to the more realistic case,
where the attack is of the same type but not identical.
Detection results for the DoS attack are relatively poor
(albeit better than the random guess). The other three
attack detection models provide considerably better re-
sults with regards to ACC.

100
o0

80
70
60
50
40
30
20

xDoS

= Commandinj
— Malware(NET)
= Malware(CPU)

10—\ et I~
o N §‘._.;,

Test Validation Test Validation
Cyber Cyber+Physical

Fig. 9. Accuracy chart for the four models on Test and Validation data

using Cyber only and Cyber+Physical features.

B. Receiver Operating Characteristic Curves

AUC COMPARISON USING CYBER ONLY AND BOTH CYBER AND

TABLE V

PHYSICAL INPUT FEATURES

AUC
Attack Cyber only | Cyber + Physical
DoS 0.89 0.73
Command inj. 0.75 0.87
Malware (NET) 0.82 0.86
Malware (CPU) 0.91 0.97

As our system is effectively a binary classifier (“Yes,
there is an attack” vs. “No, there is no attack”), we also
use ROC curves to measure its performance. The ROC
curve plots the true positive rate (TPR) against the FPR
for different thresholds as shown in Figure 10. In an
ideal detection result, the curve should go through the
point (0,1) where the FPR is 0% and TPR is 100%. Area

(=]
— Fme s e T e = LS s =
oo T
=
o
@O
E w
5 °
=
:‘ﬁ
(=]
o
@]
E (=]
=
= — DoS
= = Command injection
<=+ Malware (NET)
= | - =- Malware (CPU)
(=]

T T T T T T
0.0 0z 04 0.6 0e 1.0

False positive rate

Fig. 10. The ROC curves of the detection rules for the four attacks:
DoS, Command Injection, Malware (NET), Malware (CPU) and all, in
the case where all eight cyber and physical input features are utilised.

= 3 e = [
et T ===1 T
- 1
(=T _r a4
@O
E w
5 °
=
:‘5
(=]
o
@]
E (=]
=
= — Dos
= = Command injection
<=+ Malware (NET)
= - =- Malware (CPU)
2 4

T T T T T T
0.0 0z 04 0.6 0e 1.0

False positive rate

Fig. 11. The ROC curves of the detection rules for the four attacks:
DoS, Command Injection, Malware (NET), Malware (CPU) and all, in
the case where only the four cyber input features are utilised.

The performance of all four detection models is
demonstrated in Figure 10. Using the ROCR package in
R [22], we can visualise how TPR and FNR change for

each detection model with different probability thresh-
olds. As can be observed, the AUC for the malware
attack against the CPU (0.97) is considerably higher
than other attack scenarios. The models for command
injection and malware (NET) attack have similar AUC
at 0.87 and 0.86 respectively. The DoS scenario has the
lowest AUC model at 0.73.

Repeating the same experiments without taking into
account the physical input features, the performance
of the intrusion detection system drops noticeably for
command injection and the malware attacks, but not for
DoS (see table V for the detailed comparison).

C. Detection latency (DL)

A primary concern for cyber-physical systems is their
real-time nature, which means that timeliness, and hence
detection latency is particularly important. In fact, de-
tection latency may be potentially more important than
the accuracy of the detection, as there is no point in
detecting an event after it has caused permanent physical
damage to a vehicle (e.g., by causing it to veer off
the road and crash). A few researchers have included
detection latency as a metric, but mostly in relation to
mobile ad hoc networks and wireless sensor networks
[23], [24]. We propose that this is a significant metric for
assessing the performance of our system. This has also
been recognised in Mitchell and Chen’s excellent survey
in [8].

Based on the design of the intrusion detection frame-
work (Figure 3), there are various factors that affect DL
including the data collection time, the processing time
and the actual detection accuracy of the mechanism.

TABLE VI
DETECTION LATENCY (MS) FOR DIFFERENT ATTACK TYPES (CYBER
ONLY VS. CYBER + PHYSICAL)

Attack block (s) Detection latency

Attack Block | Start End C (ms) | C+P (ms)
DoS Bl 374.04 | 423.04 1020 1000
Command inj. B2 31232 | 331.32 | 2020 1460
B3 34232 | 361.32 | 2340 1040
Malware (NET) | B4 362.02 | 376.02 | 2020 1940
B5 393.02 | 407.02 1520 1000
B6 422.02 | 436.02 | 2020 2020
Malware (CPU) | B7 360.06 | 374.04 | 2020 1200
B8 390.06 | 404.04 1000 1000
B9 420.7 | 435.04 1000 1020

The data collection time is the time it takes for all
data to reach the detection system. It depends on the
collection period (T) of each feature, as in Table II, the
time taken for data preparation, including interpolation
period, and the time it takes the data to be sent for
processing. Then, there is the processing time, which is
the time it takes the algorithm to process the data and
reach a detection decision.

The data collection and processing times remain
largely the same across different detection scenarios

Detection result
DoS

— Incorrect detecion
Correct detection

Attack

Mo
1
L]
L]

T T T T T
340 / 360 / 380 400 420 \
Ep

Time (s)
Command injection

— lIncorrect detecion
Carrect detection

oL DL
T w V
2 27 ¢ B2 B3
g — - [43 [¢ 3 - }([314
T T T T T
300 \// 320 340 350\ 380
Fp FP FE
Time (s)
Malware [NET)
— lIncorrect detecion
Carrect detection
FN DL FN - -
FM DL FN
i~
E $ — 0 (t(%”/ (,/BS\c\ <« Bf |c
£ =
=L
g — o | {93 |- I(|($ L& &
T T T T T
340\ 360 380 j 400 \U 420 4m
FP ED L FP
FP Time (s)
Malware (CPU)
= Incorrect detecion
Correct detection
DL FN DL .
i s L s
g 21 B3 B9 =
% - L5 [3 i
T T T T T
340 \ 360 380 400 \AO 440
FP FP ED
Time (s)

Fig. 12. Detection result for representative attack scenarios

(around 1 s). What does differ significantly is the delay in
relation to the accuracy of the algorithm. A false negative
outcome would delay the detection of an attack until the
first true positive result is achieved for a given attack. So,

a visual presentation of detection latency is depicted in
Figure 12. Note that the YES Vs. NO points correspond
to the ground truth. So, an incorrect detection on a YES
line is a false negative (FN), and on a NO line is a false
positive. Detection latency is added by the time of the
first FN block (DL block) occurring at the beginning of
each YES (attack time) block (see Table VI).

VI. CONCLUSION AND FUTURE WORK

As real-world and experimental cyber-physical attacks
are becoming more prevalent, onboard intrusion detec-
tion systems are expected to become particularly impor-
tant, especially for standalone robotic vehicles, whether
remote-controlled or autonomous. We have hypothe-
sised that the existence of physical manifestations of
cyber attacks on vehicles and other cyber-physical sys-
tems constitutes an opportunity for intrusion detection
purposes. We have experimented with four different
types of attack and have observed different performance
for each one. For example, we see that utilising physical
features in addition to cyber features can increase the
false negatives dramatically, but this is not the case
for command injection attacks. For these, the addition
of physical features improves all detection performance
metrics. Similarly improved performance is observed for
the two types of malware attacks.

Looking beyond traditional performance metrics, what
does appear to be a consistent benefit is the noticeably
lower detection latency. We argue that for robotic vehi-
cles this is important. Poor accuracy, such as high false
positives, is expected in some cases, especially for highly
dynamic systems that are influenced by their physical
environment. Here, the detection latency can be more
important, for example, if an unacceptably high delay
means that a cyber-physical attack can cause the vehicle
to crash and injure human beings before it is detected.

We now intend to extend the scope of our work by ex-
perimenting with more attack types, such as communica-
tion jamming and replay attacks, as well as with different
detection mechanisms. A decision tree-based approach
can be very light-weight, but is not flexible enough to
address attacks that the system has not been trained
on. For this purpose, in addition to this knowledge-
based approach, we are also working towards testing the
hypothesis that the addition of physical input features
can improve not only the detection latency but also the
accuracy of a behaviour-based detection approach.

REFERENCES

[1] G. Loukas, Cyber-Physical Attacks: A Growing Invisible Threat.
Butterworth-Heinemann (Elsevier), 2015.

[2] G. Jennings, “Iran claims to have flown reverse-engineered us
stealth uav,” November 09, 2014. London - IHS Jane’s Defence
Weekly.

[3] R. Sasi, “Maldrone the first backdoor for drones,” January 26,
2015. Fblh2s aka Rahul Sasi’s Blog.

(4]

[5]

(6]

[7]

(8]

9]

[10]

(1]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]
[22]

[23]

[24]

S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno,
“Comprehensive experimental analyses of automotive attack sur-
faces,” in Usenix Security Symposium, 2011.

A.]J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys,
“Unmanned aircraft capture and control via gps spoofing,” Journal
of Field Robotics, vol. 31, pp. 617-636, 2014.

J. Griffiths, “Zhejiang University team scoops 10,600 Yuan for
hacking into Tesla Model S,” July 17, 2014. South China Morning
Post.

T. Vuong, A. Filippoupolitis, G. Loukas, and D. Gan, “Physical
indicators of cyber attacks against a rescue robot,” in IEEE In-
ternational Conference on Pervasive Computing and Communications,
pp. 338-343, IEEE, 2014.

R. Mitchell and L-R. Chen, “A survey of intrusion detection
techniques for cyber-physical systems,” ACM Computing Surveys
(CSUR), vol. 46, no. 4, p. 55, 2014.

A. S. Uluagac, V. Subramanian, and R. Beyah, “Sensory channel
threats to cyber physical systems: A wake-up call,” in 2014 IEEE
Conference on Communications and Network Security (CNS), pp. 301-
309, IEEE, 2014.

T. Bonacdi, J. Herron, T. Yusuf, J. Yan, T. Kohno, and H. J. Chizeck,
“To Make a Robot Secure: An Experimental Analysis of Cyber
Security Threats Against Teleoperated Surgical Robotics,” pp. 1-
11, 2015.

S. Shetty, T. Adedokun, and L.-H. Keel, “Cyberphyseclab: A
testbed for modeling, detecting and responding to security attacks
on cyber physical systems,” 2014.

A. Fagiolini, G. Dini, and A. Bicchi, “Distributed intrusion detec-
tion for the security of industrial cooperative robotic systems,” in
World Congress, vol. 19, pp. 7610-7615, 2014.

R. Mitchell and L-R. Chen, “Adaptive Intrusion Detection of
Malicious Unmanned Air Vehicles Using Behavior Rule Specifica-
tions,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. PP, no. 99, p. 1, 2013.

V. Skormin, A. Dolgikh, and Z. Birnbaum, “The behavioral ap-
proach to diagnostics of cyber-physical systems,” in AUTOTEST-
CON, 2014 IEEE, pp. 26-30, IEEE, 2014.

K. Sravani and P. Srinivasu, “Comparative study of machine
learning algorithm for intrusion detection system,” in Proceedings
of the International Conference on Frontiers of Intelligent Computing:
Theory and Applications (FICTA) 2013, pp. 189-196, Springer, 2014.
G. Kim, S. Lee, and S. Kim, “A novel hybrid intrusion detection
method integrating anomaly detection with misuse detection,”
Expert Systems with Applications, vol. 41, no. 4, pp. 1690-1700, 2014.
B. R. Patel and K. K. Rana, “A survey on decision tree algorithm
for classification,” International Journal of Engineering Development
and Research, vol. 2, 2014.

S.Noh, C. Lee, K. Choi, and G. Jung, “Detecting distributed denial
of service (ddos) attacks through inductive learning,” Intelligent
Data Engineering and Automated Learning, pp. 286-295, 2003.

A. Filippoupolitis, G. Loukas, and S. Kapetanakis, “Towards
real-time profiling of human attackers and bot detection,” in
Proceedings of 7th International Conference on Cybercrime Forensics
Education and Training (CFET), 2014.

Watts up? meters, www.wattsupmeters.com.

M. Kuhn, W. Steve, and N. Coulter, “Package C50,” 2014.

T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer, “Rocr:
visualizing classifier performance in 1,” Bioinformatics, vol. 21,
no. 20, pp. 3940-3941, 2005.

M. Striki, K. Manousakis, D. Kindred, D. Sterne, G. Lawler,
N. Ivanic, and G. Tran, “Quantifying resiliency and detection
latency of intrusion detection structures,” in Military Communi-
cations Conference, 2009. MILCOM 2009. IEEE, pp. 1-8, IEEE, 2009.
T.-L. Chin and W.-C. Chuang, “Latency of collaborative target de-
tection for surveillance sensor networks,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 26, no. 2, pp. 467-477, 2015.

