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Abstract. In an emergency scenario, civilians and emergency personnel have to 
continuously adapt their behaviour and make quick decisions to tackle 
unpredicted developments. Determining the optimal decisions and devising 
viable operational plans, while adapting to world changes, require systematic 
and accurate investigation of such systems. To effectively carry out such 
investigations in largely populated scenarios, we need a software framework 
that allows (i) reproducibility of the experiments, (ii) extendibility to diverse 
and unforeseen scenarios and (iii) distributed operation to allow the simulation 
of largely populated scenarios. We achieve all three requirements by developing 
an agent-based discrete-event simulation framework, and then building on top a 
Building Evacuation Simulator (BES), according to modern software 
engineering practices. 
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1   Introduction 

The characteristics of the individuals involved in an emergency and the way their 
behaviours adapt in response to changes of their surrounding conditions, have a 
dramatic impact on the outcome of a rescue operation [1]. Specifically, in a building 
emergency scenario, the routes through which civilians will be directed towards the 
external points of collection, and the allocation of rescuers and firemen, are some of 
the critical decisions that must be made in real-time. These decisions will have to 
continuously be adapted to unpredicted developments, such as the spreading of a fire, 
the delayed propagation of information due to faulty communication infrastructure, 
and the congestion in stairwells. Techniques for quick and optimal decision making 
have been developed for these purposes, such as [2]. In this paper, we tackle the 
challenge of designing a simulation tool that combines reproducibility of experiments 
with a high level of flexibility for a broad scope of models and scenarios. The 
Building Evacuation Simulator (BES) allows easy configuration of the simulated 
model and rapid incorporation of new components that can be locally developed and 



then transparently deployed in either local or distributed environment, in close 
analogy with the simulation framework SimJ [3] [4]. 

 

The remaining of the paper is organised as follows. We start with a quick 
summary of existing state-of-the-art contributions and identify their differences with 
our work. We continue with the description of the simulated model and the details of 
the simulator framework. Then, we show how to incorporate new models in our 
framework and present a preliminary validation of the BES with a simple evacuation 
scenario in a building with four floors and three stairwells. We conclude with a 
summary of our contributions and the work we plan to carry out in the near future. 

2   Related Work 

The application of agent technologies to the study of emergency situation is not new. 
DrillSim [5], the simulator of human and social behaviour in emergency evacuation 
[6], and the simulator for crisis management [7], all present state-of-the-art simulation 
platforms for building evacuation in emergency situations. 

 

DrillSim [5] differs from the BES mainly at its scalability and reusability. The 
scalability is reduced because the simulator is based on a centralised simulation 
engine that runs only in local environment. Differently, the BES enables the use of 
distributed environment, and therefore offers a higher degree of scalability. DrillSim 
also presents a reduced reusability. This is due to the structure of the simulation 
engine and the configurability of the actors in the scenario. The simulation engine 
includes the simulated geographic space, the evacuation scenario, and the agents. By 
such design approach, the switching to another implementation simulation engine that 
might perform better for the given simulation workload, requires considerable 
reworks. The agents also present limited configurability in terms of decision, motion 
and health models because their characteristics can be specified only through the 
parameters of the hard-coded models. Differently, the BES adopts a very modular 
architecture. It is horizontally based on the layered architecture SimArch and the 
principle of separation of concerns which maintains separated the parameters that do 
not affect the behavioural logic of the agents, from the logic itself. By this approach, 
the BES gains: i) the transparent use of the different simulation engine with no extra 
effort, such as distributed in the place of a local one, ii) the development and testing 
of new agents locally before the deployment in the distributed environment, and iii) 
the testing and parameterisation of new models and optimisation algorithms.  

Finally, both DrillSim and BES are augmented reality simulators but in different 
manner. We have already presented such results and comparisons in [8].  

 

The framework presented in [6] differs from the BES for the grid-based modelling 
approach of the space, which does not scale very well for large areas, for the 
execution in local environment only, and for the 3D visualisation that our simulator 
does not currently provide. Moreover, the two contributions have complementary 
scopes. Indeed, the work presented here provides a general framework within which 
one can implement all the modelling aspects defined in [6].  

 



Finally, the authors of [7] concentrate on the modelling of the social interactions, 
while we focus on the architecture of the simulation framework. In addition, their 
contribution uses rule-based reasoning and decision-making, which cannot scale in a 
distributed environment and are computationally demanding even in a local 
environment. Thanks to its modular architecture, BES can effectively incorporate the 
reasoning and decision-making modelling that they used in [7]. 

3   Simulated Model  

In a typical building evacuation scenario, the actors involved are the civilians who 
evacuate the building, the rescuers who collect injured civilians and the firemen who 
try to extinguish the fire. Following the agent paradigm [9], they need to be 
independent and intelligent enough to individually decide which resources to use, and 
how to cooperate or compete for their use. These decisions depend on both their 
internal objectives and the state of their external world. The human agents are 
provided with their own personal view of the world, and with their own decision, 
motion, and health models, which collectively describe their status. As an extension to 
the typical scenario, one may add an ongoing, dynamic threat which may exist for the 
agents. Such threats are handled as hazard agents, which do not occupy physical 
space, but affect the conditions of the simulated world, both the human agents and the 
actual building.  

 

The different types of agents operate on the simulated physical world, which we 
model using a set of graphs. The nodes of such a graph represent the physical “Points 
of Interest” (PoI), while the edges represent the available paths between them. PoI 
may be, for example, the physical location of a fire extinguisher, a door, a desk, or the 
intersection point between evacuation paths. When a path between two locations is 
blocked, this is simply represented by the loss of the corresponding links or by a 
prohibitive increase of the movement cost on them. We followed this approach, 
because our focus is on largely populated scenarios, the simulation of which should 
not be slowed down by the modelling of every little detail of the physical world that 
does not effectively influence the evacuation. Apart from the reduced computational 
demands, we also benefit from the several existing algorithms for known graph theory 
problems. For example, most actors that are familiar with a building will use the 
shortest path to reach their destination, while the rescuers will have to visit all areas of 
the building in the shortest possible time.  

 

Further to the global graph, which represents the whole of the simulated physical 
world, we use sub-graphs to define local regions. An agent is always fully aware of all 
changes that occur in the local region it belongs to. For example, the nodes and the 
edges modelling a room all belong to the sub-graph of the same local region, because 
all the agents in the room perceive every change that is taking place in it. We use sub-
graphs also for the modelling of dynamic hazards, such as the spreading of fire in the 
building. Of course, each node can belong to more than one sub-graph, and the nodes 
of the physical world may be connected with different links on their various sub-
graphs, depending on what these represent.  

 



Finally, an important issue that is covered effectively with our graph-based 
modelling is the effect of congestion in the choke points of the building, such as 
doors, narrow corridors and staircases. Each node of the physical world graph is 
modelled as a server with limited capacity and a single queue. When a human agent 
arrives at a choke point, it either finds it free and is immediately served (crosses the 
node), or finds it busy and queues up. This approach allows for the integration of 
more complex queuing models that have been developed in the literature, for human 
beings moving through congested areas [10]. 

4   Simulator Framework 

The simulator framework is built according to modern software engineering 
techniques that tend to enable a model-driven approach to the development of the 
simulators [11]. It is based on the architecture SimArch [11] (Figure 1), which 
organises the simulator software in four different layers: Simulation Model Layer (4), 
Simulation Components Layer (3), Discrete Event Simulation Layer (2), and 
Distributed Discrete Event Simulation Layer (1), which is built on top of the IEEE 
HLA standard [12]. 

 

Layer 4 is the layer where the simulation model is defined through the declaration 
of the agents involved in the simulated scenario. Such agents are provided by Layer 3, 
which in turn uses Layer 2 for communication and synchronisation transparently in 
both the local and distributed environment. Layer 1 provides a Discrete Event 
Simulation (DES) abstraction on top of the distributed computing infrastructure 
conventionally identified by Layer 0. This bottom layer does not belong to SimArch 
but provides the basic services to operate in a distributed environment. 

4.1 SimJADE  

SimJADE is a simulation framework that extends the popular agent-based JADE 
framework [13] by introducing an innovative formulation of discrete event simulation 
systems in terms of multi-agent systems [14]. The most widely adopted DES 
paradigm is process interaction [15], which presents many affinities with MAS. It is 
based on independent simulation entities that communicate and synchronise their 
logical time to carry out the simulation according to the properties of causality and 
reproducibility. A discrete event simulation system can therefore be modelled as an 
agent society with a defined ontology, composition, and interaction protocol. 

The simulation ontology, named DES-Ontology, defines the DES concepts 
(simulation time) and actions (DES and simulation life cycle management services) 
that are used as semantic base for the communications among the simulation agents.  
The concepts defined by the DES-Ontology are: 

• AbsoluteSimulationTime 
• RelativeSimulationTime 

 
 



with “relative” having default semantic “respect to the current time”. Although these 
two concepts are related by a simple linear transformation, the definition of a relative 
time concept is included in the ontology because in the simulation community is 
common practice to use it as parameter type in several DES services. 
 

The actions included in the ontology are of two types: the simulation management 
services and the DES services. Belonging to the first category are the actions to 
manage the simulation life cycle: 

• Register agent: to request the permission to join the simulation society; 
• Registration successful: to acknowledge the permission in response to a 

Register Agent request;  
• Remove agent: to resign the society; 
• Simulation end: to inform that the society objective has been reached. 

 

Whereas the second group includes: 
• Conditional hold time: to request an hold for a given simulated time unless 

any even notification before it; 
• Hold time: to request an unconditional hold for a specified simulated time; 
• Notify time: to inform that the specified time has been reached; 
• Notify message: to inform that the specified event was requested to scheduled 

for the receiving agent, at the current time; 
• Send message: to request the delivery of the specified event at the specified 

time to another simulation entity agent; 
• Wait message: to request to be wake up when a simulation message is to be 

notified.   
 

The simulation agent society is composed of two types of agents: simulation entity 

 

Figure 1 SimArch Architecture [11] 



and simulation engine. The simulation entity agent incorporates the simulation logic, 
i.e. the sequence of internal operations and DES service requests, and provides to the 
developers with discrete event simulation versions of the conventional JADE services, 
such as doWait and receiveMessage. With this approach, SimJADE brings a model-
driven development of the simulation system, since developers are provided with a 
uniform interface and are not involved with the details of the communication and 
synchronisation, local or distributed [3], standard agent-based or simulated agent-
based [14]. 

 

The simulation engine agent, which may be unique within the society, collects the 
request and orchestrates the society according to the properties of causality and 
reproducibility. It is available in two transparently interchangeable versions, local and 
distributed. The distributed version is implemented in close analogy with the 
framework SimJ and is based on a HLA-based implementation of layer 1 of the 
SimArch architecture (Figure 1) [11]. 

 

The interaction protocol is composed of a populating phase and a serve-and-
process cycle. In the populating phase, the simulation entities register into the society 
to be included in the synchronisation mechanisms. The serve-and-process represents 
the main cycle of the simulation where the communication and synchronisation 
requests are collected and processed. It relies on the fact that some requests are 
blocking other are not; and it assumes that while performing a blocking request, the 
entity agent does not perform other request and waits for a respective simulation 
message notification. While collecting the requests, the simulation engine schedules 
proper simulation event handlers to deal with such a request. When the handler is 
processed because the relative simulation time has reached, it unblocks the entity 
agent that has requested it.  

4.2   Agents: Dynamics and Models  

The agents, including their dynamics and the parameterisation, are defined at Layer 
3 of the above architecture. Their design is based on the key principle of Separation 
of Concerns [17] that suggests designing components with a minimised in such a way 
that presents features computer programs into distinct features that overlap in 
functionality as little as possible. Each agent is defined by a behavioural logic, which 
specifies the interaction with the external world, and a set of parameters that do not 
affect the pattern of the logic, according to the design outlines in [18]. By such 
approach, the cohesion of each agent is maximised to make it reusable across the 
several values the parameters might assume. A straightforward, but effective, 
methodology to individuate the candidate parameters comes from the analogy with 
the physical agents. A ResourceManager manages the world model, and the active 
actors, human and hazard agents, use and affect the condition of such resources.  

The ResourceManager coordinates the access to the node and supports the 
management of the world updates for each agent. Its dynamics are structured in two 
phases, a wait for an event and the processing of it. The expected types of events are: 
WantToMoveTo and FinishedMove. When receiving a WantToMoveTo a node, the 
manager checks whether the node is already occupied by some other human agents. If 



the node is busy, it enqueues the request according to a FCFS policy, otherwise it 
immediately warrants the access by sending an AuthorisedToMove event. When 
receiving a FinishedMove event, the manager checks whether other human agents 
have requested to move on the node. In the affirmative case, the manager authorises 
the movement of the first agent in the queue. In addition, the ResourceManager 
regulates the updates for the agents. Knowing the position of the each human agent, it 
determines if a change in the world should be reflected into the individual perception 
of the world. Similarly, when a human agent moves to a different group of nodes or 
edges, it provides the updated condition for all the nodes and edges concerning that 
group. 

The human agents are provided with their own personal view of the world, and 
with their own goal, motion and health models which describe their status. The human 
agents, which move and occupy space in the physical world, present a behavioural 
logic that is mainly composed of movements because they can only interact with the 
surrounding parts of the world. Therefore, they must reach the point in the space they 
want to interact before performing any other type of actions. The basic dynamic is 
described by the state diagram in Figure 2. 

 

After positioning on the initial node, the human agent state diagram proceeds with 
a cycle of movements that eventually lead to the final state, which is either a dead 
agent or the accomplished ultimate goal, such as reaching the point of collection. 

After having decided the goal (where to go) and how to reach it, the agent enter the 
Reaching the Node state in which it sends a WantToMoveTo event to the 
ResourceManager through the underlying layer services. It thus enters the state 
Waiting for Movement Authorisation and remains there until the node’s 
ResourceManager authorises the movement on the node. The manager sends the 
AuthorisedToMove event immediately, if the node is free, or when it receives a 
finished movement message from the agent currently on it. The simulation time 
between the notification want to move and the reception of the authorisation is the 
queuing time at the node. The agent authorised to occupy the node holds such position 
for some simulation time before either moving to another node by starting over the 
movement cycle or terminating its life if it has reached its ultimate goal – which 
generally is the external point of collection. However, some of the movements might 
not be completed in certain conditions of the world because they might require an 
amount of time greater that the remaining life time of the agent. To include this case, 
transitions from the states Reaching the Node and Waiting for Movement 
Authorisation to the end state are included.  

 

The standard human agent dynamics might incorporate custom sub-dynamics for 
the specific type of agents present in the simulated scenario. Such sub-dynamics, 
however, take place when the agent reaches the node and terminates with another 
movement act, which leads the agent on a different node. For example, a rescuer, who 
wants to collect an injured civilian on a floor, first reaches the specific point, and then 
starts the specific dynamics, with which takes charge of the injured civilian, and 
finally moves towards the exit. 

 

From the above description, it is easy to infer which the parameters that compose 
the static structure of the human agent because do not affect the dynamics pattern are: 
1) the decision of on which nodes it wants to move, 2) the travelling time between 



two nodes and the occupation time on a node, and 3) the life time. Such parameters 
are therefore kept separated from the agent behavioural logic and can be specified at 
the time of agent instantiation by passing implementation at configuration time, as in 
[18]. For each of them, we defined a hierarchy of classes that can be immediately 
used. 

 

Parameter 1 depends on the agent’s personal goal and the strategy adopted to 
achieves it. From the software architecture point of view, this parameter is specified 
by the goal “reach a node in the graph”, which includes a destination node and a 
decision model that instructs the agent on how to reach it. The goal is defined by the 
hierarchy show in Figure 4. It can be of type Simple or Composite, with the latter 
being sub-classified into Sequence of Goals or a set of Concurrent Goals. The 
decision model gives the directions on how to reach. The model is also provided with 
an update function that operates as observer of the WorldModel and reflects the 
changes of it on the internal structure, according to the respective design pattern [19]. 
Such modular structure allows a quick modelling of the different types of human 
agents in a possible realistic scenario. For example, civilians are provided with a 
SingleGoal, which is reaching the point of collection, while avoiding dangerous paths 
(with fire for example) or congested path. Differently, rescuers might have 
ConcurrentGoals (e.g. reaching an injured civilian on floor 3, or floor 10) and might 
have different strategies to reach them depending on their knowledge of the world and 
the anti-fire protections they wear. 

 
 

 

Figure 2 State Diagram of the Human Agent Basic Dynamics 



Parameter 2 determines the time duration characteristics of the movement time on 
the edges and on the nodes. It is defined through the specification of the speed values 
on both elements as a function of the agent state, the agent characteristics and the 
physical conditions of the node or edge, on which the movement is occurring. These 
values can be constant, as in evacuation trainings, or be function of the perception of 
danger in the event of real emergencies, and can depend on individual panic condition 
due to fire or other physical factors. 

 

Parameter 3 affects the outgoing transitions between Reaching the Node and 
Waiting for Movement Authorisation. If the life time is smaller that the time needed 
for the movement, the agent dynamic reaches the end state, otherwise it proceeds 
according to the above specification. This parameter is also maintained updated 
through the exposition time in adverse physical conditions.  

 

While moving the agent receive updates of the world, which may change its health 
status, its goals and the ways it reaches. To reduce the number of the event and the 
complexity of behavioural dynamic, the updates are sent during the crossing of an 
edge and when completing the movement on a node. In a general, the time spent on 
the nodes is negligible compared to the time spent on edges and the rapidity in the 
variations of the world conditions, so that the changes are delayed for human agents 
in movement on a node. 

 

The hazard agents, such as fire-spreading and smoke-spreading, affect the 
conditions of the simulated world, but do not occupy physical space. They present a 
simpler yet different simulation dynamic since they do not compete for the access to 
the nodes. For their peculiarities, they constitute an independent group. The simulator 
is currently provided with a fire agent, which behaviour can predetermined, with a 
manual description through XML configuration files, or probabilistic. In either case, 
the fire intensity on each node and edge is represented as a number between 0 and 
1000, and propagates on an extended world model that inherits the structure of the 
plan and adds edges between physically adjacent nodes. In real scenarios, for 
example, the fire may propagate not only through doors and along corridors, which 
can be traversed by human agents, but also through walls and ceilings. The 
probabilistic model is built according to the guidelines in [20] with further adaptations 

 

Figure 3 Composition of human agents 



to include the fire intensity in the spreading dynamics. For further details, please refer 
to [8]. 

4.3   Going Distributed  

The simulation of a realistic scenario involving thousands of civilians, tens of rescuers 
and firemen needs computational resource that are at least of polynomial order of the 
number of simulated agents. Such resource might not be available on a single host, 
and therefore a distributed environment is needed to effectively carry out behavioural 
and adaptation studies in such systems. By the use of the SimArch architecture [11], 
the simulator gains a transparent deployment of agents in either local or distributed 
environment. This can be indeed done by switching the local version of the simulation 
engine agent with the distributed version by the use of a HLA-based implementation 
of SimArch’s Layer 1, available from previous works [4] [11]. 
 

Despite of the transparent deployment of the agents in either environment, the 
distributed execution raised new modelling issues. To optimally use the distributed 
environment, two major issues are to be deal with: how to partition the simulated 
model over the available computational resources and how to improve the simulator 
performance through model refinements that do not heavily affect the simulated 
model. 

 

The model is partitioned in order to exploit the intrinsic parallelism of independent 
physical subsystems, while meeting the memory constraints on each host and 
minimising the network workload. For instance, the events happening within a floor 
or along stairs loosely affect the rest of the system; therefore the simulated world is 
allocated on independent single area simulator that can be either floor or stairs, each 
running on a separate host. In addition, since the stairs constitute critical evacuation 
paths which are going to be traversed by all the agents escaping the building, they 
might become overcrowded with the number of agents. In that case, a further 
partitioning could be necessary in order to meet the memory requirements. 
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Figure 4 Goal's hierarchy 



 A key factor for the performance of the simulator is the amount of data exchanged 
between the separate simulators. In order to reduce such data, the world model is 
locally stored and cloned for each incoming agent and then enriched with agent’s 
personal knowledge. In addition, considering that the agent executing locally can 
interact only with the local world, a condensed view or the remaining world is 
adopted as compromise strategy to achieve scalability of the simulated world and 
accuracy decision making process. 

5   Incorporating New Models 

Separating the behavioural dynamics from the specification of the decision, motion 
and health models brings good reusability of the human agent basic dynamics, which 
can easily incorporate new and possibly adaptive models. According to the above 
schema, we can define the following parameterisation for the civilians. They are 
provided with a simple goal that consists in reaching the external point of collection. 
The goal is achieved by computing the best path between the current position and the 
destination associated on a graph-based decision model. Initially, the graph is labelled 
with the physical distance between the nodes; however, changes in the world affect 
the weights according to the decision model updater function. In the case of civilian, 
this function is defined by the following expression: 
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The civilians’ motion model is defined as function of the world and individual motion 
characteristics. For the floor, the speed on the edges is uniformly distributed in 145 – 
155 cm/s [21], and the speed on the nodes is constant and equal to the average 150 
cm/s. For the stairs, the speed on the edges reduces to 60 – 80 cm/s, whereas the 
speed on the nodes remains the same. 

 

The civilians’ health model life time is defined as step function. The civilian 
survives until the physical conditions of the world cross the individual threshold. 
Currently, the function is taken as dependent only on the fire level on the node or 
edge being traversed:  
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A possible extension of such human agent’s parameters could include the modelling 
of other phenomena occurring during the evacuation of a building. For example, to 
model the competition for the use of the intersection PoIs, the motion model could be 
defined according to a different function, which could be, for instance: 
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Such function indeed models the fact that the traversal of an intersection node 
deteriorates when there are collision phenomena [6]. 
 

The rescuers are defined in a similar way. Their goal is generally of type 
“concurrent type”, since there can be more injured civilians at the same time. The 
goal selector can be based on physical proximity criteria or decentralised optimisation 
techniques based on neural networks [2]. 

 

The decision model updater is defined according a different function because the 
rescuers might wear protections, and therefore might able to traverse also more hostile 
sections of the building. An example of such function is:  
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The motion model is defined with 170 – 180 cm/s, on the floor edges, and 70 – 80 

cm/s on the stairs edges, when reaching injured civilians; and 100 – 120 cm/s on the 
floor edges, and 50 – 70 cm/s on the stairs edges, when rescuing civilians. The speed 
on the nodes is maintained the same as for the civilians, since this parameter affects 
the performance of the simulator and do not significantly influence the statistical 
results of the simulator.  

6   Preliminary Validation 

The validation of emergency simulators is generally not possible with direct 
comparison of data from the real world, because emergency metrics, such as the total 
or average individual evacuation time, for a specific building often do not exist until 
some disaster happens; when they happen the priority is not collecting statistics. 
However, a preliminary validation can be carried out by properly setting the simulator 
parameters in a verifiable scenario. 

 

We can assume that in a public building with not particularly complex structure 
and populated only by employees, who are familiar with its layout, evacuees use the 
shortest physical path to the main exit. For our validation scenario, we consider a 
public building with four floors, three stairwells and a main exit, which is the external 
point of collection for evacuees. The building is populated with 80 civilians uniformly 
distributed over the four floors. The simulation is performed in a distributed manner 
over eight federated simulators, one for each floor and stairwell, and one for the 
external point of collection. 

 

For this preliminary validation we do not consider the social behaviour of the 
evacuees, but we assume that their motion is regular and tidy, without non-adaptive 
crowd behaviour, and with queuing at choke points being the only reason for them to 
be delayed. The civilians’ motion parameters are set according to the average values 
provided in [21]. The edge crossing time each time is therefore given by l / s, where l 



is the physical length and s is the speed of each actor. We assume a global traversing 
time of 0.3s for each node. 

 

The results of our experiment after several runs show that the average total 
evacuation time is about 87s. This value is reasonably close to the ideal value of 76s 
that we computed using the optimistic mathematical model presented in [21]. 

 

As a further validation step, we tested the system behaviour of the simulator by 
measuring the average evacuation time for different allocations of the 80 civilians in 
the four floors (Figure 5). In the first experiment (Exp. 1) we place 35 civilians on 
floor 1, and 15 civilians in each of the other three, while in Exp. 2 we have 35 
civilians on floor 2 and 15 in the others, and so on for Exp. 3 and 4. As we expected, 
the closer the majority of the civilians are to the external point of collection, the lower 
the average evacuation time, despite the effect of increased queuing times at 
congested areas. 

 

 

Figure 5 Variation of average evacuation time for different distribution of civilians over the 
four floors 

7   Conclusions  

The field of disaster management and emergency response can benefit greatly from 
the use of computer simulation, both to evaluate evacuation plans, standard policies, 
and decision mechanisms, and also to suggest optimal actions even during an 
emergency. However, the systematic investigation of the adaptive behaviour of agents 
and complex interaction with their physical surroundings in disaster scenarios 
requires a software framework that allows reproducibility of experiments and rapid 
extendibility to new models and scenarios. In this paper, we presented a simulation 



framework which meets these requirements, and additionally provides transparent 
deployment in both local and distributed environments. 

 

The distributed operation of our software allows the simulation of largely 
populated scenarios, and also gains better fault-tolerance and integration with other 
simulators. As future work, we plan to make use of the latter by integrating the 
Building Evacuation Simulator (BES) with a simulator of larger scope, such as the 
excellent work on the Robocup Rescue (RR) [22], which deals with disasters at city-
level. We envision the agents using the RR simulator to travel across the city and 
using the BES whenever they enter a building, so as to effectively simulate a disaster 
at different levels of microscopy. 

 

In this paper we presented the design of a distributed agent-based simulation 
framework geared towards evaluating adaptive decision mechanisms in building 
evacuation scenarios. In our future work, we will present such adaptive mechanisms 
with the use of this simulation framework. 
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