
1

A Biologically Inspired Denial of Service Detector
Using the Random Neural Network

Georgios Loukas and G̈ulay Öke
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Abstract— Several of today’s computing challenges have been
met by resorting to and adapting optimal solutions that have
evolved in nature. For example, autonomic communication net-
works have started applying biologically-inspired methods to
achieve some of their self-* properties. We build upon such
methods to solve the recent problem of detection of Denial
of Service networking attacks, by proposing a combination of
Bayesian decision making and the Random Neural Networks
(RNN) which are inspired by the random spiking behaviour of the
biological neurons. Our approach is based on measuring various
instantaneous and statistical variables describing the incoming
network traffic, acquiring a likelihood estimation and fusing
the information gathered from the individual input features
using different architectures of the RNN. The experiments are
conducted using the CPN networking protocol which is also based
on the RNN.

I. I NTRODUCTION

In recent years, Denial of Service (DoS) has become a pre-
dominant type of network security attack, which is relatively
simple to launch, but particularly difficult to defend against.
An attacker only needs to take control of a number of lightly-
protected computers and order them to send simultaneously
volumes of meaningless traffic to the victim. The defence
methods try to decrease the effects of the overwhelming
incoming traffic in a way that will not disturb the legitimate
traffic that also arrives at the victim. This procedure can be
facilitated if the attack is detected long before the destruc-
tive traffic build-up, which is why most comprehensive DoS
defence systems need a detection mechanism to trigger the
response procedure. This would not be needed in the case
of an ideal response architecture with proactive qualitiesthat
would render a DoS attack impossible, but such a system has
not been built to date, and proactive solutions are usually
too expensive resource-wise to operate in the absence of
an attack. A detection mechanism should monitor the traffic
continuously and signal any developing attacks in the network,
which should then trigger a response mechanism aiming to
protect the network resources and maintain a satisfactory level
of quality of service for the legitimate users. The success of a
detection mechanism is determined by a number of factors,
including its probability of correct detection of the attack,
missed detection, and false alarm in the absence of an attack.

Also, it should consume minimal resources and reach detection
decisions quickly in real-time before the attack builds up.

In the technical literature, a large number of diverse methods
have been proposed ranging from machine learning applica-
tions like neural networks [18], radial basis functions [17]
and fuzzy classifiers [20] to statistical approaches employing
autocorrelation functions [12], entropy and chi-square statistics
[8], self-similarity properties [13] and energy distribution
variance [19].

Here, we attempt to bridge these two general directions
of DoS detection, machine learning and information gathered
with statistical methods. We have built a system which uses
several statistical features deemed in the literature as most
significant for a DoS attack, and combines the individual
decisions in a machine learning fashion. We present and
compare six different implementations of it, which combine
multiple Bayesian classifiers and the random neural network
(RNN). Bayesian classifiers have been used before for DoS
detection [9], but applied only on the rate of appearance of
specific flags in the packets’ headers, and in [22], where
hypothesis testing was used on the spectral analysis of bitrate
to detect only one very specific type of attack. In our work we
present a more general approach which aggregates likelihood
estimation of heterogeneous statistical features and combine
them in a biologically inspired neural network structure.

The random neural network (RNN) introduced by Gelenbe
in [2] is an alternative neural network model based on the
spiking behaviour of the biological neuron instead of the
classical approaches which assume analog transmission of
signals. In this paper, we exploit the capability of the RNN
to model the excitatory and inhibitory interactions among its
inputs for the case of malicious incoming traffic in a network.
In fact, the experiments we conduct also exploit a RNN-based
networking protocol, the Cognitive Packet Network (CPN)
[15], which is an autonomic Quality of Service (QoS)-driven
routing protocol. In CPN each flow specifies the QoS metric
that it wishes to optimise, and data payload is carried by
source routed “dumb packets” (DPs), while “smart packets”
(SPs) and “acknowledgment packets” (ACKs) gather and carry
control information which is used for decision making. In
CPN, each flow specifies its QoS requirements in the form
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of a QoS “goal” and SPs associated with each flow constantly
explore the network and obtain routing decisions from network
routers based on observed relevant QoS information. In our
experiments we use the CPN to ensure that the traffic arrives
to their destination quickly using the optimal routes.

II. SELECTING THE INPUT FEATURES

The task of DoS is a pattern classification problem, where
the observed traffic is to be classified as normal or attack
traffic. The Bayesian Decision theory is a basic approach used
in pattern recognition problems. It assumes the availability
of probabilistic descriptions of the underlying features of
a problem and aims to find a decision rule which would
minimise the risks encountered by the decision taking process
[6]. For a two-category classification problem, let us assume
we can measure an observation valuex for a certain feature,
and we have to decide whether the observed data point falls
into the normal (wN ) or DoS (wD) category. The practical util-
isation of Bayesian classifiers in the two-category classification
problem entails evaluating the likelihood ratioΛ(x) = f(x|wD)

f(x|wN )
and comparing it with a thresholdT , x is assigned to category
wD if Λ(x) > T , or to wN otherwise.

For any pattern classification problem, the selection of
useful and information bearing input features constitutesa
significant part of the solution. In our scheme we have used
the features which capture both the instantaneous behaviour
and the longer-term statistical properties of the traffic, and
are easily measurable without high computational cost. Since
the goal of the attacker is to deny or degrade the service for
legitimate users by overwhelming either the processing or the
networking resources of a victim network, a DoS detection
mechanism should not further aggravate this condition with
considerable overhead. Being able to measure them quickly is
also a factor, since the faster detection decisions are taken the
easier it is for the defence mechanisms to counter the attack.

• Bitrate. An unexpectedly high rate of incoming traffic is
the most conspicuous indicator of a flooding DoS attack.
Similar measurements, such as the number of packets per
flow are often used in detection mechanisms [11].

• Increase in Bitrate. Another obvious characteristic of
DoS attacks is the sudden and sustained rate of increase of
the bitrate of the incoming traffic. For example, flooding
attacks start with a long period of increasing bitrate,
while in pulsing attacks there are consecutive periods of
increasing and decreasing bitrate.

• Entropy. It has been reported in the technical literature
that the entropies of normal internet traffic and DoS
traffic differ significantly [8]. In this work, we compute
the entropy of the value of the incoming bitrate at the
nodes we monitor according to [1]:E = −

∑

i filogfi,
wherefi are the histogram values obtained for the bitrate,

as explained in Section IV. This is expected to yield a
higher value when the probability distribution expands
over a wider range of values, indicating an increase in
uncertainty.

• Hurst Parameter. Another statistical attribute which ex-
hibits different behaviour for normal and attack traffic is
the self-similarity. Hurst parameter is an indicator of the
self similarity of traffic and can be used in DoS detection.
For example, Xiang et al. [13] use the variations of the
Hurst parameter of the number and the size of packets
to detect attacks. In our approach we compute the actual
value of the Hurst parameter for the incoming bitrate,
for which we have used the (R/S) analysis, as described
in [14]. If x is the bitrate of the incoming traffic,n
is the observation time, andN is the total number of
observation points, then(R/S) is given by:

(R/S)N =

max
1≤n≤N

N
∑

n=1

(x − x̄) − min
1≤n≤N

N
∑

n=1

(x − x̄)

√

√

√

√

√

N
∑

n=1

(x − x̄)2

N

The Hurst parameter and(R/S)N are related by
(R/S)N = cNH , which for the selected valuec = 1
becomesH = logN ((R/S)N ).

• Delay. A natural consequence of high bitrate and building
up of congestion is the increase in the packet delays.
Still, to our knowledge it has not been used before as
an attack indicator. For the fastest and least invasive way
to detect changes in the delays, the node we monitor
sends constantly packets at a very low rate to all its direct
neighbours. By measuring the average round trip time
(RTT) for the acknowledgments to return, we have a clear
indication of the congestion near the node.

• Delay Rate. As with bitrate, depending on the type of
the attack and for its whole duration, the packet delays
are expected to undergo significant changes. We are not
aware of existing work using the change of the delay as
a detection feature, but we consider it a natural next step.

III. O FFLINE STATISTICAL INFORMATION GATHERING

The probabilistic description of the network is acquired
in the statistical information gathering phase which mainly
consists of two steps. First, the probability density function
(pdf) values are obtained for both normal and attack traffic
and then the likelihood ratios are calculated based on the
pdfs. At each victim candidate of the network, the incoming
traffic is analysed offline to collect this statistical information.
Estimates of probability density functions in the form of
histograms for both normal and attack traffic are computed
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for each of the input features described in Section II. The
pdfs are denoted byffeature(x|wN ) and ffeature(x|wD),
where feature is replaced by bitrate, increase in bitrate (bit
acceleration), entropy, Hurst parameter, delay and delay rate
respectively,x is the measured value of the feature from the
available traffic data,wN denotes the normal traffic andwD

the DoS traffic.
In the second step, the probability density function estimates

obtained above for each input and for both traffic types are
used to compute the likelihood ratioslfeature of each feature:
lfeature =

ffeature(x|wD)
ffeature(x|wN ) . These likelihood ratios are later

used in real-time by the decision taking mechanism (Section
IV). Likelihood ratios, actual values and quantised actual
values (histogram category values) of the features are used
also in the training of RNNs.

IV. D ETECTION DECISION

The statistical information collected about the network off-
line is utilised during the decision taking process, which
comprises two steps. In the first step, decision for each
feature is given individually, and the individual decisions are
then combined in an information fusion step to yield a final
outcome for the state of the traffic. The numerical values of the
features are measured in real-time and a likelihood value for
each feature is computed. Then, these values are aggregated
in a higher-level decision taking step which we realized by
employing a feedforward (f-RNN) and a recurrent (r-RNN)
architecture of the RNN, with input the individual likelihood
values, histogram category values and actual values, for a
total of six different implementations of our generic detection
technique.

The random neural network (RNN), proposed by Gelenbe
[2] is a computational paradigm, inspired by the random
spiking behaviour of the biological neurons. The RNNs are
computationally efficient structures and they represent a better
approximation of the true functioning of a biophysical neural
network, where the signals travel as spikes rather than analog
signals. The strong analogy between queuing networks and the
RNN make it a powerful tool for dealing with problems where
excitation and inhibition among problem inputs are prevalent.
The RNN has been successfully applied in various problems,
including image processing [4], pattern recognition [21],and
optimisation [3].

In the RNN, neurons exchange positive and negative im-
pulse signals, with unit amplitude, which represent excitation
and inhibition respectively. Neurons accumulate signals as they
arrive and positive signals are cancelled by negative signals.
Neurons may fire if their potential is positive, to send signals
either to other neurons or outside the network. In RNN a
signal may leave neuroni for neuronj as a positive signal
with probabilityp+(i, j), as a negative signal with probability
p−(i, j), or may depart from the network with probabilityd(i),

wherep(i, j) = p+(i, j)+ p−(i, j) and
∑

j

p(i, j)+ d(i) = 1.

Positive and negative weights are computed by:

w+(j, i) = r(i)p+(i, j) ≥ 0

w−(j, i) = r(i)p−(i, j) ≥ 0

wherer(i) is a Poisson firing rate, with independent identically
exponentially distributed interimpulse intervals:

r(i) =
∑

j

w+(i, j) + w−(i, j)

The weightsw may be interpreted in a way analogous to the
weights in artificial neural networks (ANNs), but they actually
represent excitatory and inhibitory signal emission rates.

The steady state probability that the neuroni is excited is
defined byqi = limt→∞Pr[ki(t) > 0] which is computed to
be qi = N(i)

D(i) , where

N(i) =
∑

j

qjw
+(j, i) + Λ(i)

D(i) = r(i) +
∑

j

qjw
−(j, i) + λ(i)

with Λ(i) andλ(i) denoting the rates of exogenous excitatory
and inhibitory signal inputs into neuroni, respectively.

RNNs can be designed in both feedforward and recurrent
architectures (f-RNN and r-RNN). In our work we have
implemented both architectures for the fusion of inputs to
compare the results.

The f-RNN architecture we implemented consists of an
input layer of six nodes, a hidden layer with twelve nodes and
an output layer with two nodes. Each output node stands for
a decision; attack or not. The final decision about the trafficis
determined by the ratio of the two output nodes. The r-RNN
structure we have designed consists of two layers, an input
layer with twelve nodes and an output layer with two nodes.
In the input layer, there are two nodes for each input variable;
one for the excitatory signals and one for the inhibitory signals.
Each node sends excitatory signals to nodes of the same type
and inhibitory to the rest. At the output layer, one node sums
up the excitatory and a second the inhibitory signals. Just as
in the feedforward case, the decision is given by computing
the ratio of the two output nodes.

For the implementation of the RNNs, we have used software
developed in [25]. For both f-RRN and r-RNN we have used
three different types of input:

• Likelihood ratios . The likelihood ratioslfeature for the
six input features are obtained by measuring their real-
time values and resorting to the likelihood ratio values
stored during the offline statistical information gathering
phase described in section III.
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• Histogram categories. These refer to the histogram
intervals used to estimate the pdfs described in section
III and they essentially quantise the available values.

• Actual values. For the sake of comparison we have also
investigated the case in which the actual values of the
input features are directly fed in the two types of RNN.

V. EXPERIMENTAL EVALUATION

We have implemented and evaluated our detection mecha-
nism on a networking testbed in our laboratory, which consists
of 46 nodes connected with 100 MBits/sec links. We chose a
specific node to play the role of the victim while the rest of the
nodes send traffic to it according to a variety of datasets that
we tried. In our experiments, we utilised traffic traces of DoS
attacks designed both in our laboratory and by other academic
sources: (i) attack traffic of our design slowly increasing,
(ii) attack traffic downloaded from [24] representing rapid
flood, and (iii) attack traffic downloaded from the same source
representing a pulsing attack, with traffic rates reciprocating
between very low and very high values. We have used two
types of RNN architecture, f-RNN and r-RNN, with three
types of input for each feature: likelihood ratios, quantised
histogram category values and actual values. Each experiment
lasts 120 sec. In the attack cases, to illustrate the difference
in the traffic and to see graphically the operation of the
detection mechanism, we start with normal traffic on which we
superimpose attack traffic for the time period between 50s and
100s. The last 20s the network returns to its normal operation,
as the attack sources stop sending traffic to the victim. We used
a sampling time of 2 sec.

Table 1 summarises the performance results of the detection
mechanism in terms of average correct detection, false alarm
rates and detection delays, while figures 2-4 show the real-time
detection decisions as time progresses. They axis in these
graphs is in logarithmic scale with the detection metric being
the ratio of the two output RNN nodes as described in section
IV. The decision threshold over which an attack is signalledis
the RNN output ratio of 1. The closer the detection ratio is to
1 the less certain the mechanism is of its detection decision.

Figures 2-4 correspond to the three attack datasets that we
used. All three implementations of the RNN detect the attacks
quickly and have minimal missed detections and false alarms.
The r-RNN with actual values had high detection rates, no
false alarms and the lowest detection delay for all datasets, but
also provided the lowest degree of certainty for its decisions by
yielding values close to 1. The use of the quantised values of
histogram categories appear to improve the correct detection
rate even further, but at the expense of a few false alarms,
while the likelihood value methods for both f-RNN and r-
RNN performed at about the same level in both respects, but
took a little longer to detect the pulsing attack (dataset3).
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Fig. 1. ROC curves for Dataset2 (attack)

We have also plotted some representative ROC curves for
the six variations, based on one of the datasets (Fig. 1). The
ROC curves are graphs of false positives versus true positives,
to which we have referred in this paper as false alarms and
correct detections respectively. In an ideal system, the ROC
curve should rise immediately from (0,0) to (0,1) and continue
to (1,1). We see this behaviour in all six variations, with a
slight advantage of the r-RNN with histogram categories and
f-RNN with likelihood values.

Looking at the overall performance of our detection mecha-
nism, it emerges that apart from the f-RNN with actual values
implementation, all methods are quite powerful detectors of
attack traffic. In general, the r-RNN implementations are
observed to be more accurate and slightly faster.

VI. CONCLUSIONS

We have described the design of a generic DoS detection
scheme which employs multiple Bayesian classifiers and the
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False Alarm Correct detection Detection Delay (s)
Detection implementation Dataset1 Dataset2 Dataset3Dataset1 Dataset2 Dataset3 Dataset1 Dataset2 Dataset3
f-RNN likelihood values 0.17 0.11 0.08 0.96 0.96 0.84 2 0 12

f-RNN histogram categories 0.03 0.11 0.03 0.92 1 0.80 4 0 8
f-RNN actual values 1 1 1 1 1 1 0 0 0

r-RNN likelihood values 0.06 0.11 0.03 0.96 0.96 0.80 2 0 12
r-RNN histogram categories 0.06 0.06 0.06 0.96 1 0.88 2 0 8

r-RNN actual values 0 0 0 0.92 1 0.84 2 0 6

TABLE I

COMPARISON OF THE DIFFERENT DETECTION IMPLEMENTATIONS, IN TERMS OF FALSE ALARM AND CORRECT DETECTION RATES

biologically inspired RNNs. We first select input features to
capture both the instantaneous behaviour and the longer-term
statistical properties of the traffic and in an offline information
gathering step we obtain the probability density function
estimates and evaluate likelihood ratios. Then, during the
decision taking step, we measure the features of the incoming
traffic to reach detection decisions according to each feature.
These are combined into an overall detection decision using
both feedforward and recurrent architectures of RNN. The
experiments we conducted showed that our mechanism is able
to detect DoS threats in a timely fashion and can very quickly
identify the end of an attack, at least for the range of attacks
that we investigated.
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Fig. 2. Detection results for Dataset1 (attack)
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Fig. 3. Detection results for Dataset2 (attack)
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Fig. 4. Detection results for Dataset3 (attack)


