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Abstract

In recent years, Denial of Service attacks have evolved into a predominant network
security threat. In our previous work, we identified the necessary building blocks
for an effective defence mechanism and suggested ways to integrate them. Here,
we present the results of this integration on the DoS-resilience of a real networking
testbed which runs the Self-Aware CPN routing protocol. The incoming traffic at
each node is monitored with a detection mechanism that is based on maximum
likelihood estimation. In response to high probability of attack, the traffic is rate-
limited proportionally to the measured probability. We illustrate the results of the
experiments we have performed to demonstrate the efficiency of the distributed
defence system that we propose.
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1. INTRODUCTION

During the last decade Denial of Service attacks (DoS) have evolved from simple acts of nuisance
to a predominant network security threat with repercussions ranging from significant financial
losses [15], endangerment of human life [16] and compromising of national security [18]. Due to
the simplicity of the concept and the availability of the relevant attack tools, launching a DoS attack
is relatively easy, while defending a network resource against it is disproportionately difficult. In
the majority of DoS attacks the attacker acquires control of a large number of hosts, which are
unaware that their machines are compromised, and orders them to simultaneously target a victim
network node or set of nodes. In the most general sense, a complete DoS defence system should
be able to detect the existence of the attack in real-time and trigger classification and response
mechanisms. Classification refers to distinguishing between normal traffic (sent by legitimate
users) and attack traffic (sent by nodes controlled by the attacker). Response mechanisms usually
involve dropping the traffic that was identified as attack traffic during the classification phase, or
redirecting it to a honeypot where it can be analysed. Classification and response are usually
resource-demanding procedures that should not be running continuously, but only when an attack
is suspected. For this reason, a comprehensive DoS defence system must include a mechanism
that monitors the traffic and signals developing attacks with low false alarm and high correct
detection rates, in a timely fashion. The faster a DoS attack is detected, the easier it is to block it
before it develops in full force.

We present a DoS defence system that involves detection, nd response, and we describe how
these building blocks are integrated in practice. The detection mechanism uses as input a variety
of suitable metrics to capture both the instantaneous behaviour and the longer-term statistical
properties of the traffic, including the incoming bitrate, entropy, delay, etc. Statistical information
related to the network is collected offline by finding the probability density functions for these input
features for both normal and attack traffic and calculating the likelihood ratio for each input, which
are then combined by evaluating their average. The overall likelihood ratio, L provided by the
detector is a numerical value that expresses the average likelihood of having a developing attack
within the incoming traffic. This value is utilised by the response mechanism to turn the rate-limiter
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on and off. As the rate-limiting mechanism, we use Token Bucket Filtering (TBF) which is a simple
light-weight queueing discipline that only allows packets up to a set rate to pass. In the following
sections we explain the defence system in detail.

2. DETECTION AGAINST DENIAL OF SERVICE ATTACKS

The task of DoS detection can be formulated as a pattern classification problem, where the
observed traffic is classified as normal or attack traffic. In our DoS detection mechanism, the
incoming traffic is monitored in terms of various features for decision taking and we utilise the
maximum likelihood detection criterion to take individual decisions for each of the input features.
The collected information is then combined in a fusion phase to yield an overall decision about
the traffic. The overall mechanism comprises the selection of the input features, offline statistical
information gathering and information fusion for the final decision taking.

For the input feature selection step, we selected the following features that capture both the
instantaneous and the longer-term statistical behaviour of the traffic, without introducing high
computational costs:

• Bitrate. A very high rate of incoming traffic is by far the most conspicuous indicator of a
flooding DoS attack. Similar measurements, such as the number of packets per flow are
often used in detection mechanisms [25].

• Increase rate of Bitrate. Depending on its type, a DoS attack typically demonstrates sudden
and sustained increases in the rate of the incoming traffic. For example, flooding attacks
start with a long period of increasing bitrate, while in pulsing attacks, the incoming traffic
undergoes consecutive periods of increasing and decreasing bitrate.

• Entropy. The entropy related to a data with a probabilistic description is inherently
associated with the randomness or uncertainty of information in the data. It has been
reported in the technical literature that the entropy contained in normal internet traffic and
traffic under DoS attack differ significantly [4]. In our work, we compute the entropy of the
value of the incoming bitrate at the nodes we monitor according to [1]:

E = −
∑

i

filog2fi (1)

where fi are the probability density functions obtained from the normalized histogram values
for the bitrate. This is expected to yield a higher value when the probability distribution
expands over a wider range of values, indicating an increase in uncertainty.
It has been studied in detail in [12] that the self-similarity properties of normal and attack
traffic are distinctively different. Since the Hurst parameter is an indicator of the self similarity
of traffic, it can be used in DoS detection. Xiang et al [9] use the variations of the Hurst
parameter of the number and the size of packets to detect attacks. In our approach we
compute the actual value of the Hurst parameter for the incoming bitrate, for which we have
used the (R/S) analysis, as described [10]. If x is the bitrate of the incoming traffic, n is the
observation time, and N is the total number of observation points, then (R/S) is given by :

(R/S)N =

max
1≤n≤N

N∑
n=1

(x − x̄) − min
1≤n≤N

N∑
n=1

(x − x̄)

√√√√√
N∑

n=1

(x − x̄)2

N

The Hurst parameter and (R/S)N are related by (R/S)N = cNH , which for c = 1 becomes
H = logN ((R/S)N ).

• Delay. Although a DoS attack is also expected to increase the packet delays as congestion
builds up, to our knowledge it has not been used as an attack indicator. For the fastest and
least invasive way to detect changes in the delays, the node we monitor sends constantly
a small number of packets to all its direct neighbours. By measuring the average round trip
time (RTT) for the acknowledgments to return, we have a clear indication of the congestion
near the node.

  BCS International Academic Conference 2008 – Visions of Computer Science154



Distributed Defence Against Denial of Service Attacks: A Practical View

• Increase rate of Delay. Depending on the type of the attack and for its whole duration, the
packet delays are expected to undergo significant changes.

In the off-line statistical information gathering phase, the probabilistic description of the network is
obtained First, the probability density function (pdf) values are obtained for both normal and attack
traffic and then the likelihood ratios are calculated based on the pdfs. At each victim candidate of
the network, the incoming traffic is analysed offline to collect this statistical information. Estimates
of probability density functions for both normal and attack traffic are computed for each of the input
features described above. The pdfs are denoted by ffeature(x|wN ) and ffeature(x|wD), where
feature is replaced by bitrate, increase in bitrate (bit acceleration), entropy, Hurst parameter, delay
and delay rate respectively, x is the measured value of the feature from the available traffic data,
wN denotes the normal traffic and wD the attack traffic. We have used the histogram method
to compute the estimates of the probability density functions. With this method the range of
observable values for a variable is divided into a number of intervals and for each interval, we
compute the ratio of the number of data points that fall into it to the total number of data points
available [26].

In the second step, the probability density function estimates obtained above for each input
and for both traffic types are used to compute the likelihood ratios lfeature of each feature:
lfeature =

ffeature(x|wD)
ffeature(x|wN ) . These likelihood ratios are later used in real-time by the decision taking

mechanism.

This statistical information collected about the network is utilised during the decision taking
process. First, decision for each feature is given individually, and the individual decisions are
then combined in an information fusion step to yield a final outcome for the state of the traffic.
The numerical values of the features are measured in real-time and a likelihood ratio for each
feature is computed. Then, these values are aggregated in a higher-level decision taking step,
which provides a compensation for possible errors, and should decrease the rate of false alarms
and missed detections. In this case we will simply take the average of the individual likelihood
values:

lfinal =
lbit + lacc + lentr + lHurst + ldelay + ldelrate

total number of features
(2)

A more accurate approach for the fusion of the likelihood values can be found in [22], where we
employed both feedforward and recursive structures of the random neural network for a variety of
inputs.

A wide variety of DoS attack detection methods have been suggested in the literature, usually
based on symbolic analysis of the traffic packets and in particular of IP addresses and other
significant packet content. Other approaches are based on the timing characteristics of the
packets streams. All of them require or assume some representation of what is a normal traffic
stream as opposed to a DoS related stream. Also, many of the techniques require an on-line
tuning or learning phase that is used to create patterns, data or statistics to compare with
presumed attacks. For this paper, we have used a detection method that we developed with
the purpose of maintaining low computational cost and with the additional requirement that the
output is not a boolean value, but the probability of the existence of an attack. Any other detection
mechanism that fulfills these two requirements could also be used.

3. RESPONSE AGAINST DOS

In this part of our research we tried to combine rate-limiting which we chose as response
mechanism against DoS attacks [11, 13] with the detection mechanism. In the overall architecture,
the detection mechanism is deployed at the first-hop neighbours of the victim monitors the traffic
continuously and outputs a numerical value L expressing the average likelihood of having a
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developing attack in the incoming traffic. This value is utilised by the response mechanism to turn
the rate-limiter on and off. The overall architecture of the defence system is shown in Figure ??:

FIGURE 1: A comprehensive defense architecture against DoS

3.1. Classification and Corresponding Prioritisation

Classification is a vital part of DoS defence. In fact, the probability of correctly distinguishing
normal from attack traffic has great impact on the performance of the overall defence system
during an attack. In the literature, one can find a wide range of classification techniques with
varying success for different normal and attack traffic patterns. Classification can be done with
other passive or active tests of the validity of incoming traffic. Passive tests include the anomaly-
based criteria presented in [8], conditional legitimate probability [17], hop-count filtering [6] and
many others. Active tests are these which in some way try to interact with suspected attack
traffic sources so as to test their legitimacy. Examples include Graphical Turing Tests [5] and
Netbouncer [7]. It is well-known, however, that classification methods are not easy to evaluate
and there has been no such comprehensive comparison up to now. For this reason, we will not
consider a specific classification mechanism, but we will assume different ”success” values for
the classification process, in the form of correct detection and false alarm probabilities. Our goal
is to evaluate our defence system for different such values. The result of the classification is
then directly connected to the second element of our response mechanism, the prioritisation.
More specifically, the incoming traffic is allocated to priority bands depending on the result of
the classification. For example, assuming a 2-band priority system, normal packets should be
assigned to the first band and attack packets to the second.

3.2. Rate-limiting

Rate-limiting is the process of allowing traffic only up to a maximum limit to pass. It essentially
means that traffic in excess of a set limit is dropped to avoid congestion. For rate-limiting, we have
used Token Bucket Filtering (TBF) which is a simple light-weight queueing discipline that only
allows packets up to a set rate to pass, with the possibility to allow short bursts in excess of that
rate [19].

To apply the filter, we have used commands at the application layer of Linux that determine the
desired latency, bandwidth, buffer and burst limits, such as the following example:
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tc qdisc change dev eth4 parent 1 : 1 handle 10 : tbf rate 15Mbit latency 10ms burst 15000

In our implementation, we first queued the incoming packets into two, with packets coming from
legitimate sources having higher priority of being served with respect to packets coming from
nodes listed as possible attack sources. To do this, we assumed that as soon as the attack starts
it is possible to trace back the true IP addreses of the sources to determine the legitimate and
illegitimate nodes. Since there is always error rate associated with this procedure, we assigned
predetermined false alarm and correct detection rates for the traceback when we are evaluating
our results. Then we integrated the filter with the detection system where the numerical output of
the detector L is used by the filter to turn on and off. If L, computed by the detection mechanism
is high, the filter is turned on to stop the flow of the packets to the subsequent nodes, while if L
is low, the filter is off to enable the flow of packets. In the simplest case, the filter parameter burst
can be determined as:

rate =

{
RateMin if L ≥ limit
RateMax if L < limit

(3)

In the above equations RateMax, RateMin, MaxLimit and MinLimit represent the maximum
and minimum values of the rate parameter in the filter, the value of the likelihood after which the
burst takes its maximum value(full rate-limiting) and the value of the likelihood before which burst
takes its minimum value (no rate-limiting) respectively.

It is also possible to allow for intermediate values of L where the filter correspondingly takes an
intermediate value as a limit to decrease the flow of packets to protect the network against a
probable attack, without stopping them altogether to permit outgoing legitimate packets.

3.3. Achieving Distribution

The defence approach we have proposed is dynamic and distributed in the sense that every
node runs the algorithm itself and decides whether or not to turn the filter on. The response is
determined according to the severity of the attack. Only a few of the neighbouring nodes will be
employed in rate-limiting if the severity of the attack, denoted by L is not too high, allowing for
legitimate packets also to reach the destination, otherwise all the nodes will drop packets. The
nodes which are not under destructive attack will continue sending out packets, so the directional
information related to the attack will also be employed.

In distributing the response against DoS between nodes, we have been motivated by the
task allocation mechanism of ants. In intelligent task distribution systems inspired by swarm
intelligence, each member of the team is assigned a threshold, either low, or intermediate or
high. The members join to perform the task probabilistically, by comparing the stimulus from the
physical world to the threshold they have. Thus, highly demanding jobs require more members to
join the team, while easier jobs can be accomplished by only a few workers [27].

In our DoS defence system, the physical stimulus is the likelihood value L evaluated by the
detection mechanism at each node. If L at a particular node is not high, it will not join to the
response team for filtering, but will turn the filter on if L is above some threshold. Each node gives
its own decision according to the stimulus it receives. This approach is useful since each task
consumes some of the resources of the node and if not needed the node should not be willing to
take on additional task. Also, the aim of the defence mechanism is to drop attack packets while
allowing as many legitimate packets as possible to reach their destination. Turning the filter on
only at highly required instances could also serve this purpose.
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4. EXPERIMENTAL RESULTS

We have tested the performance of this method by the experiments we have designed on our
15-node experimental testbed depicted in Figure 2. The networking testbed is running the CPN
Self-Aware routing protocol, which provides detailed measurements of the traffic characteristics
in real-time and is particularly resilient to failures and attacks thanks to its self-adaptive design
[2, 3].

The Cognitive Packet Network (CPN) is an autonomic Quality of Service (QoS)-driven routing
protocol. In CPN each flow specifies the QoS metric that it wishes to optimise, and data
payload is carried by source routed “dumb packets” (DPs), while “smart packets” (SPs) and
“acknowledgment packets” (ACKs) gather and carry control information which is used for decision
making. Each flow specifies its QoS requirements in the form of a QoS “goal” and SPs associated
with each flow constantly explore the network and obtain routing decisions from network routers
based on observed relevant QoS information. In our experiments we use the CPN to ensure that
the traffic arrives to their destination quickly using the optimal routes.

FIGURE 2: The 15-node topology used in the response experiments

In our topology, node 207 is the victim. The experiments last for 120 sec. Between 0-60 sec, there
is normal traffic in the network (goodput), which is depicted in Figure ??. This traffic is basically
two cyles of the same pattern, one from 1st to 60th sec. and the other from 61st to 120th sec. At
the 60th sec the attack starts and lasts for 40 seconds. Attackers, nodes 202, 206, 209, 214, 216,
217 and 219 send varying attack traffic superposed onto normal traffic existing in the network. To
implement the attack traffic we have used traces we have collected from [14] We assume that it
is possible to turn on a traceback mechanism to classify the packets according to whether they
are coming from legitimate or illegitimate sources based on the source IP addresses. At each
node of the network packets are queued according to the source address and the packets in the
second queue (illegitimate) receive service after all the packets in the first queue (legitimate) are
serviced. Since there can naturally be an error rate associated with the traceback mechanism, we
have assigned a false alarm rate of 10 percent and correct detection rate of 90 percent for the
determination of legitimate and illegitimate sources. The first hop neighbours 203, 208 and 212
continuously run the detection algorithm and evaluate L. They determine whether to apply the
filter or not according to the rate equations given in section 3.2. The experimental results obtained
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are illustrated at in Figure 4 to Figure 6. Figure 4 shows the likelihood of attack calculated at first
hop neighbours. It is observed that the computed likelihood of attack increases between the 60th
and 100th seconds to correctly signal the attack in the network. Figure 5 depicts the average
goodput arriving from the legitimate sources measured at the victim for the cases of defence and
no defence, obtained for 10 runs of the experiment for each case. To have a more precise result
for the performance of the defence system, we evaluated the ratio of the average goodput arriving
at the victim for the second cycle of the input traffic (when there is attack) to the average value of
the goodput for the first cycle (when there is no attack). When defence system is on, the ratio is
0.885, when it is off, the ratio is 0.64. So, the defence system has achieved a conspicious increase
on the goodput arriving at the victim. Figure 6 illustrates the variation of the average value of this
ratio for a fixed false alarm rate of 10 percent and varying correct detection rates of the packet
classification mechanism.

5. CONCLUSIONS

In this paper, we have described our research towards the design of a comprehensive defence
architecture against DoS attacks. Our defence system consists of a detection mechanism
combining a statistical approach based on the maximum likelihood detection criterion with
a machine-learning approach which uses maximum likelihood estimation and a rate-limiting
mechanism triggered by the result of the detection. The response mechanism deployed at the
first hop neighbours of the victim monitors the traffic continuously and evaluates a parameter
signalling the likelihood of a developing attack. TBF filters are turned on and off to limit the
packets or allow for their transmission according to the attack likelihood. Since each node collects
the statistics and employs the response system itself, this is a distributed architecture which
distributes the response task dynamically according to the severity of the attack. The approach we
have presented here our first attempt to build an integrated, dynamic and self-adaptive response
architecture against DoS.
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FIGURE 3: Graph of goodput arriving at the victim when there is no attack
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FIGURE 4: Graph of likelihood of attack versus time at the neighbouring nodes to the victim
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FIGURE 6: Graph of average ratio of goodput (attack to non-attack cases) arriving at the victim versus correct
detection rate (False alarm rate is fixed at 10 percent)
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