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Abstract— Denial of Service (DoS) is a prevalent threat in
today’s networks. While such an attack is not difficult to launch,
defending a network resource against it is disproportionately
difficult, and despite the extensive research in recent years,
DoS attacks continue to harm. The first goal of any protection
scheme against DoS is the detection of its existence, ideally long
before the destructive traffic build-up. In this paper we propose
a generic approach which uses multiple Bayesian classifiers,
and we present and compare four different implementations
of it, combining likelihood estimation and the Random Neural
Network (RNN). The RNNs are biologically inspired structures
which represent the true functioning of a biophysical neural
network, where the signals travel as spikes rather than analog
signals. We use such an RNN structure to fuse real-time
networking statistical data and distinguish between normal and
attack traffic during a DoS attack. We present experimental
results obtained for different traffic data in a large networking
testbed.

I. INTRODUCTION

A denial-of-service attack (DoS attack) is an attempt to
make a network resource unavailable to its legitimate users.
Such attacks are generally distributed; the attacker typically
acquires control of a large number of hosts, which are
unaware that their machines are compromised, and orders
them to simultaneously target the victim. Since the early
1990s and particularly the last six years, the majority of
organisations with online presence have been victims of DoS
attacks, with the repercussions ranging from simple nuisance
to significant financial losses [27], endangerment of human
life [28] and compromising of national security [29].

The extreme diversity of DoS attacks has produced sim-
ilarly diverse protection proposals in the three aspects of
DoS defence, namely the detection of the existence of an
attack, the classification of the incoming flows as normal
and DoS [20], and the corresponding response [15]. In this
paper we concentrate on the problem of DoS detection. To
provide a network with an effective system of protection
against DoS attacks, one must first employ a method to detect
such an attack. This would not be needed in the case of an
ideal response architecture with proactive qualities that would
render a DoS attack impossible, but such a system has not
been built, and proactive solutions are usually too expensive
resource-wise to operate in the absence of an attack.

A detection mechanism should monitor the traffic con-
tinuously and signal any developing attacks in the network.
This should then trigger a response mechanism which will
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attempt to protect the network resources and maintain a
satisfactory level of quality of service for the legitimate users.
The success of a detection mechanism is determined by its
probability of correct detection, false alarm, and missed de-
tection, and on its ability to reach detection decisions quickly
in real-time and consume minimal processing resources. The
following is a summary of the existing proposals in the
literature.

Intelligent learning techniques comprise a significant part
of the current research on DoS detection. Neural networks
[9], radial basis functions [16], support vector machines [10],
fuzzy classifiers [21], and Adaptive Neuro-Fuzzy Inference
Systems (ANFIS) [17] have all been applied for detection.

Normal internet traffic is known to be long-range depen-
dent (LRD) and self-similar, while a DoS attack usually
results in deviations from these statistical properties, which
can be used for its detection if evaluated in real-time. Thus,
various statistical techniques have been employed in DoS
detection. In [12] the incoming traffic is classified as normal
or attack by calculating its autocorrelation function. Xiang et
al compute the variance of the Hurst parameter in consecutive
time intervals to evaluate the change of self-similarity of
the traffic [13]. In a similar approach, Feinstein et al [6]
measure the entropy and chi-square to detect the existence
of an attack.

Additionally, while the energy distribution of normal traf-
fic is known to be relatively stationary, an attack usually
results in changes in the energy distribution variance. Li and
Lee [19] use wavelets to compute the variations in the energy
distribution in the incoming traffic and compare them with
a threshold, and Yang et al [11] determine flat bursts in the
traffic with the continuous wavelet transform.

In this paper we present and compare four different imple-
mentations of multiple Bayesian classifiers combined with
the Random Neural Network (RNN). Bayesian classifiers
have been used before for DoS detection by Noh et al
[7], but applied only on the rate of appearance of specific
flags in the packets’ headers, and by Chen et al [23], who
used hypothesis testing on the spectral analysis of bitrate
to detect only one very specific type of attack. In our
work we present a more general approach which aggregates
likelihood estimation of heterogeneous statistical features and
combine them in a neural network structure. The RNN,
proposed by Gelenbe is a computational paradigm, inspired
by the random spiking behaviour of the biological neurons.
The RNNs are computationally efficient structures and they
represent a better approximation of the true functioning of a
biophysical neural network, where the signals travel as spikes



rather than analog signals. The strong analogy between
queuing networks and the RNN make it a powerful tool for
dealing with problems where excitation and inhibition among
problem inputs are prevalent. RNNs have been successfully
applied in various problems, including image processing [4],
pattern recognition [5], and optimisation [3]. They can be
used in both feedforward and recurrent architectures. We
use the feedforward version and evaluate our approach for
different traffic data in a large networking testbed.

II. MULTIPLE BAYESIAN CLASSIFIERS IN DOS
DETECTION

The Bayesian Decision theory is a major pattern recog-
nition technique based on a probabilistic description of
the underlying features of a problem. It aims to minimise
the risks encountered by the decision taking process by
evaluating the various tradeoffs between decisions [25]. For
a classification problem of two categories (w1 and w2), the
use of Bayesian classifiers entails evaluating the likelihood
ratio, which is the ratio of the probability density functions
Λ(x) = f(x|w1)

f(x|w2)
, for the measured value x of the observation

variable, and comparing it with a threshold T . Then, x is
assigned to category w1 if Λ(x) > T ; otherwise it is assigned
to category w2 [24].

The task of DoS detection can be considered as a two-
category classification problem, where w1 corresponds to
normal network condition and w2 to existence of DoS
attack. We have used multiple Bayesian classifiers to take
individual decisions for the monitored features of the traffic
and combined them in an information fusion phase to detect
DoS attacks in incoming traffic. In the following sections
we present our approach, including the selection of the
input features, the offline statistical information gathering and
decision taking.

A. Selecting the Input Features

The selection of useful and information bearing input fea-
tures is vital for successful detection of DoS. Since DoS at-
tacks aim at overwhelming the victim system’s networking or
processing capacity, the detection method should not further
aggravate the situation by consuming too many resources.
Thus, we chose the following statistical features, which
represent both the instantaneous and long-term behaviour of
the incoming traffic and are easy to measure:
• Bitrate. An unusually high value of incoming bitrate is

the most conspicuous property of flooding DoS attack.
Although it is a very strong, if not the strongest indi-
cation of DoS, a similar condition is observed during
flash crowds, when for some legitimate reason interest
for a network resource increases dramatically. Due
to its simplicity, the bitrate measurement and similar
measurements such as the number of packets per flow
[9] are often used in detection mechanisms.

• Increase in Bitrate. Depending on its type, a DoS attack
typically demonstrates sudden and sustained increases in
the rate of the incoming traffic. For example, flooding
attacks start with a long period of increasing bitrate,

while in pulsing attacks, the incoming traffic undergoes
consecutive periods of increasing and decreasing bitrate.

• Entropy. The entropy is a measure of randomness or
uncertainty of information. It has been reported in
technical literature that the entropy of normal internet
traffic and traffic under DoS attack differ significantly.
Thus, Feinstein et al calculate the entropy of the amount
of source IP addresses to detect attacks [6]. In our
work, we compute the entropy of the value of the
incoming bitrate at the nodes we monitor, as given by
[1]: E = −∑

i filogfi, where fi are the histogram
values obtained for bitrate, as explained in Section II-C.
This would yield a higher value when the probability
distribution expands over a wider range of values,
indicating an increase in uncertainty.

• Hurst Parameter. It has been studied in detail in
[22] that the self-similarity properties of normal and
attack traffic are distinctively different. Since the Hurst
parameter is an indicator of the self similarity of traffic,
it can be used in DoS detection. Xiang et al [13] use
the variations of the Hurst parameter of the number and
the size of packets to detect attacks. In our approach
we compute the actual value of the Hurst parameter
for the incoming bitrate, for which we have used the
(R/S) analysis, as described [14]. If x is the bitrate of
the incoming traffic, n is the observation time, and N
is the total number of observation points, then (R/S) is
given by:

(R/S)N =

max
1≤n≤N

N∑
n=1

(x− x̄)− min
1≤n≤N

N∑
n=1

(x− x̄)

√√√√√
N∑

n=1

(x− x̄)2

N

The Hurst parameter and (R/S)N are related by
(R/S)N = cNH , which for c = 1 becomes H =
logN ((R/S)N ).

• Delay. Although a DoS attack is also expected to in-
crease the packet delays as congestion builds up, to our
knowledge it has not been used as an attack indicator.
For the fastest and least invasive way to detect changes
in the delays, the node we monitor sends constantly a
small number of packets to all its direct neighbours. By
measuring the average round trip time (RTT) for the
acknowledgments to return, we have a clear indication
of the congestion near the node.

• Delay Rate. As with bitrate, depending on the type of
the attack and for its whole duration, the packet delays
are expected to undergo significant changes. Although
we are not aware of an existing work using the change
of the delay as a detection feature, we consider it as a
natural next step.



B. Offline Statistical Information Gathering

The Statistical information gathering phase in our de-
tection scheme consists of two steps: We first obtain the
probability density function (pdf) values for normal and
attack traffic and then evaluate the likelihood ratios. This
information is collected offline at each victim candidate of
the network, from available traffic data, known to belong
to normal or DoS traffic. For each of the input features
of Section II-A, estimates of probability density functions
for both normal and attack traffic are obtained. We have to
compute ffeature(x|wN ) and ffeature(x|wA), where feature
can be bitrate, bit acceleration, entropy, Hurst parameter,
delay and delay rate, x is the measured value of the feature
from the available traffic data, wN denotes the normal traffic
and wA the attack traffic. We have used the histogram
method to calculate the estimates of the probability density
functions. With this method the range of observable values
for a variable is divided into a number of intervals. Then,
for each interval, we compute the ratio of the number of
data points that fall into it to the total number of data points
available [25].

After obtaining the probability density function estimates
for each input for both traffic types, we compute the likeli-
hood ratios lfeature for each feature: ffeature(x|wA)

ffeature(x|wN ) , which
will then be used in the decision taking mechanism (Section
II-C). Actual values and likelihood ratios of the features are
used also in the training of RNN.

C. Decision Taking Methods

We have designed the following four implementations of
the decision taking process:

1) Average likelihood estimation: The actual values of the
input features of section II-A are measured in real-time at
each of the DoS victim candidates that we monitor.

For each feature, a likelihood ratio is obtained by resorting
to the likelihood functions computed in II-B. The information
collected from all of these features must be aggregated in
a higher level decision taking step where a compensation
is provided for possible errors, so that a low level of
false alarms and missed detections are observed at the final
decision.

The first approach we pursue to combine individual fea-
tures is to compute the likelihood of the existence of a DoS
attack by averaging the likelihood of attack for each feature:

lfinal =
lbit + lacc + lentr + lHurst + ldelay + ldelrate

total number of features

lfinal has a value between 0 and 1. The decision on
whether the incoming traffic is normal or DoS is then taken
by comparing this value to a specified threshold, which may
or may not be dependent on the impact that the DoS attack
is expected to have on the victim.

2) RNN with likelihood values: In the second variation of
the detection mechanism, the computed likelihoods are used
as input in a Random Neural Network (RNN) [2]. In the
specific work we have used a feedforward RNN structure
with six inputs, twelve neurons in one hidden layer and

two outputs (Fig. 1). The inputs receive the values of the
likelihood ratios for the six input features and the output
nodes correspond to normal and attack traffic. For the fusion
of the data we utilised the RNN implementation described
in [30].

Fig. 1. Random Neural Network in feedforward architecture used in the
experiments

In the RNN, neurons exchange positive and negative
impulse signals, which represent excitation and inhibition
respectively. Neurons accumulate signals as they arrive and
positive signals are cancelled by negative signals. Neurons
may fire if their potential is positive, to send signals either
to other neurons or outside the network. In a RNN, a signal
may leave neuron i for neuron j as a positive signal with
probability p+(i, j), as a negative signal with probability
p−(i, j), or may depart from the network with probability
d(i), where p(i, j) = p+(i, j) + p−(i, j) and

∑

j

p(i, j) +

d(i) = 1. Positive and negative weights are computed with:

w+(j, i) = r(i)p+(i, j) ≥ 0
w−(j, i) = r(i)p−(i, j) ≥ 0

where r(i) is the firing rate. The potential for the neuron i

is qi = N(i)
D(i) , where

N(i) =
∑

j

qjw
+(j, i) + Λ(i)

D(i) = r(i) +
∑

j

qjw
−(j, i) + λ(i)

with Λ(i) and λ(i) denoting the external inputs into neuron
i. The firing rate r(i) is then computed as the sum: r(i) =∑

j

w+(i, j) + w−(i, j).

3) RNN with histogram categories: To observe the per-
formance of the RNN when actual values of features were
presented, we carried out another implementation of RNN



where we used the histogram values of each of the features
as inputs. The advantage of using histogram values instead
of actual values is to achieve better learning performance for
the RNN since the range of values that it has to learn is
quantised.

4) RNN with actual values: For the sake of comparison
we have also implemented the detection mechanism consist-
ing only of the RNN module and using as input the raw
values for the six input features that we measured during the
experiments.

III. EXPERIMENTAL EVALUATION

One of the most important issues in DoS research is
the lack of common datasets and network topologies on
which researchers can evaluate and compare their methods
1. This is not the result of a lack of consensus, but a known
aspect of the nature of DoS attacks. Realistic datasets can
be acquired only from real traffic data of networks under
real attacks, but then determining the point in time that the
attacks started and stopped is in itself an important problem
of DoS detection. As a result, for this work we have used
traffic traces of DoS attacks designed in our laboratory or
by other academic sources, as explained later in this section.
In terms of the network topology used in our experiments,
instead of applying an ideal theoretical one, we chose to
recreate a representative academic network, the SwitchLAN
backbone topology 2, which consists of 46 nodes connected
with 100 MBits/sec links, as seen in Fig. 2.

Fig. 2. The network topology used in the experiments

We used four sets of input traffic data and a real 46-nodes
networking testbed to evaluate the detection mechanisms that
we described in Section II. All experiments lasted 120 sec
and, for the sake of comparison, in all cases the victim
was one specific node in the topology. Some representative
results of the detection results as time progresses can be seen
in Figures 3-6. Fig. 3 shows the detection decisions when
we have introduced only normal traffic in the network. The
figures for the RNN methods are in logarithmic scale since
the detection result of these methods is the ratio of the two
output nodes. If the ratio is over 1 then the detector decides

1There is the exception of the DARPA-98 to 2000 datasets for DoS
detection [31], which, however, are severely outdated; the types of attack
that they represent were significant in 2000, but are now easily detected
with simple rule-based mechanisms

2The SwitchLAN network provides service in Switzerland to all univer-
sities, two federal institutes of technology and the major research institutes.

that the node it monitors is under attack. The closer the ratio
is to 1 the less certain the mechanism is of the detection
decision.

In the first case, we test the four mechanisms for normal
traffic. While the average likelihood, the RNN with like-
lihoods and the RNN with histogram categories methods
correctly yield low values, which indicate the absence of
attack traffic, the RNN with actual values method signals an
attack for the whole duration of the experiments (Fig. 3).
The best of the RNN methods seems to be the one using the
histogram categories, which did not signal any false alarm
for the duration of the experiments, in contrast with the RNN
with likelihoods which did signal a few false alarms.
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Fig. 3. Detection results for normal traffic (from the top: average likelihood,
RNN with likelihoods, RNN with histogram categories, RNN with actual
values)

In the second case, in addition to the normal traffic used
above, for the time period between 50 and 100 sec, we
introduce attack traffic that we have created in our lab. As
seen in Fig. 4, all four methods detect a clear difference
for the duration of the attack, with the RNN with histogram
categories method being the most certain among them of the
existence of an attack.

In the third and fourth cases we present in this paper,
instead of using our own attack traffic, we test the detection
mechanisms with attack traffic extracted from traces down-
loaded from an online repository of traces [26]. We attempt
to recreate the exact attack scenarios by allocating the traffic
sent by each source node of the traces to a node in our
topology. Again we introduce the attack traffic on top of the
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Fig. 4. Detection results for attack traffic (from the top: average likelihood,
RNN with likelihoods, RNN with histogram categories, RNN with actual
values)

existing normal traffic for the time period between 50 and
100 sec. The results shown in Figures 5 and 6 are similar to
those of the previous case. The average likelihood method
yields values around 0.8 while the attack lasts and less than
0.3 before it starts and after it ends. The RNN methods all
detect the attack while it lasts, with the RNN with histogram
categories method being the most confident of the detection
decision and the RNN with actual values being the least
successful.

As observed in Table I, and should be expected based
on our discussion so far, employing RNN with histogram
categories yields the lowest number of false alarms, while
both histogram categories and likelihood values give fairly
low values of missed detection. As for the implementation
of the RNN with actual values, the lack of missed detections
cannot be considered as a success, since observing also
its false alarm ratio, it is obvious that it is not able to
discriminate between normal and attack traffic.

IV. CONCLUSIONS

In this paper we have presented the design of a generic
DoS detection scheme which uses multiple Bayesian classi-
fiers and the biologically inspired Random Neural Network.
After selecting the input features to use for the detection,
we obtained estimates of probability density functions as
histograms for each feature and we computed likelihood
ratios. These ratios can be interpreted as first-level decisions
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Fig. 5. Detection results for trace1 attack traffic (from the top: average
likelihood, RNN with likelihoods, RNN with histogram categories, RNN
with actual values)

for each of the features. In high level decision taking step,
we aggregated first level decisions, by combining them
with averaging or with RNNs. We also implemented RNNs
with actual values and histogram categories of the features.
We evaluated our approach for a variety of input traffic
data in a large networking testbed and compared the four
implementations in terms of correct detections, missed de-
tections and false alarms. The strong point of our approach
is that it combines the powerful discriminating capacity and
approximation properties of the RNN with both instantaneous
values and statistical data of the incoming traffic. In our
experiments, we attempted to fuse several of the most com-
monly used input features together with some of our design,
but we have also described how additional or in some cases
more suitable input features can be used. The next step in
our research is to integrate this set of detection mechanisms
with the DoS classification and DoS response methods that
we covered in our previous papers [8], [15], [20].
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