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Abstract—The Human-as-a-Sensor (HaaS) paradigm, where
it is human users rather than automated sensor systems that
detect and report events or incidents has gained considerable
traction over the last decades, especially as Internet-connected
smartphones have helped develop an information sharing culture
in society. In the law enforcement and civil protection space,
HaaS is typically used to harvest information that enhances
situational awareness regarding physical hazards, crimes and
evolving emergencies. The trustworthiness of this information is
typically studied in relation to the trustworthiness of the human
sensors. However, malicious modification, prevention or delay
of reports can also be the result of cyber or cyber-physical
security breaches affecting the mobile devices and network
infrastructure used to deliver HaaS reports. Examples of these
can be denial of service attacks, where the timely delivery of
reports is important, and location spoofing attacks, where the
accuracy of the location of an incident is important. The aim
of this paper is to introduce this cyber-trustworthiness aspect in
HaaS and propose a mechanism for scoring reports in terms of
their cyber-trustworthiness based on features of the mobile device
that are monitored in real-time. Our initial results show that this
is a promising line of work that can enhance the reliability of
HaaS.
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I. INTRODUCTION

With almost 5 billion mobile phone users [1], 2 billion
of which using increasingly sensor-rich smartphones [2], the
amount of data generated from mobile devices is greater
than ever before. Every time people notice something unusual
or noteworthy, they share it with others in social media or
using specialised apps. This sharing culture has created an
opportunity for harvesting or generating knowledge from the
members of the public to facilitate crisis and emergency
response. Reliable and trustworthy information received in
this manner can help improve emergency responders’ and
Law Enforcement Agencies’ (LEA) situational awareness and
ability to detect and respond to evolving incidents. We refer to
this as the Human-as-a-Sensor (HaaS) paradigm for situational
awareness. A key such initiative is the TRILLION1 project
[3], which leverages the public knowledge and technological
infrastructure, including the use of smartphones, mobile apps,
wearables [4] and social media to improve community polic-
ing. TRILLION’s use of citizen reporting of crimes is the case
study that we consider in this work.

1TRusted, cItizen - LEA coLlaboratIon over sOcial Networks, http:
trillion-project.eng.it

TRILLIONs goal to reduce crime by enhancing community
policing through improved LEA-citizen communication and
cooperation is expected to make the platform an attractive
target for cyber criminals. Beyond confidentiality and privacy,
attacks against TRILLION may aim to affect availability
preventing LEAs and citizens from accessing it when needed,
and integrity, manipulating information, such as the location
as recorded or as reported by citizens’ mobile devices. An in-
cident report delivered from a malware-infected mobile device
should ideally be handled as an untrusted report regardless of
the trustworthiness of the user, but there is no practical way
for TRILLION to determine this in real-time and remotely.
These technical security challenges are amplified by the time
criticality of many of the incidents expected to be handled in
TRILLION. Beyond strong authentication and encryption, a
novel aim in TRILLION is to include the capability of scoring
individual crime reports based on the cyber trustworthiness
of the platform where they originated from. The focus here
is on crime reports (and generally HaaS reports) originating
specifically from mobile devices. Our experiments have been
conducted on Android mobile devices.

II. RELATED WORK

From a system standpoint, humans are autonomous, multi-
sensory systems with the ability to produce inferential output
data based on multiple experiential and environmental input
data. Within human society, therefore, this ability means that
humans (as physical sensors) are often best placed to provide
information in various contexts where technical systems alone
are not adequate. The concept of Human-as-a-Sensor (HaaS)
has been the subject of numerous research activities and
services which have aimed to improve situational awareness
across a range of contexts such as emergency response in the
wake of natural disasters, crisis management, event/incident
detection and monitoring or management [5]–[9]. Other ex-
amples include the use of HaaS data for neighbourhood watch
schemes [10], predicting road traffic information [11] and even
defending against security threats in social media [12].

However, whilst HaaS is a concept that promises to help
improve a number of real world problems, one of the biggest
challenges associated with it is the ability to determine the
credibility of the data that is received, as the information is
more often than not generated by unknown sources which are
untrusted. Therefore, accurately assessing the level of trust-
worthiness of the information that comes from such sources
becomes an important research challenge. Early work in this
space has sought to assess the trustworthiness of HaaS data



using the provenance of information [13], [14] and quality
of information [15], by analysing people’s behaviour and
activities on social networks [16], evaluating the performance
of human as sensors of social media threats [12], reputation
of the data source [17] and so on. More recently, a study
by Heartfield et al. [18] evaluated the feasibility of predicting
HaaS trustworthiness and efficacy for semantic attack reports.
The researchers employed the concept of human-as-a-sensor
to detect semantic social engineering attacks [19], where it
was shown that the reliability (and therefore credibility) of
users’ attack reports can be practically predicted by measuring
characteristics about their activity profiles. In [14] and [13],
authors have proposed to construct one or more world views
using the information harvested from human sensors and utilise
some of the provenance related factors such as freshness and
timeliness of information, proximity and reputation of the
reporting users to calculate a trustworthiness score for each
of the world views. However, little attention has been paid to
measuring the integrity of platforms in which HaaS reporting
is made and how this affects a report’s credibility, although re-
searchers have merely touched upon the infrastructure integrity
in [13]. Considering the integrity of platforms and its possible
effect on a report’s credibility becomes paramount when crime
or incident reports are sent to emergency services which would
lead to a physical response.

In this work, we explore the idea of identifying whether a
mobile device’s “cyber trustworthiness” state can be evaluated
accurately and in real-time, so as to serve as a factor of the
overall reliability of a HaaS report.

III. MODELLING THE CYBER TRUSTWORTHINESS OF
MOBILE HAAS REPORTS

Since HaaS reports are expected to come mostly from
sensor-rich smartphones (and 9 in every 10 smartphones are
reported to use the Android operating system [20]), our focus
in this work is to assess the device cyber security posture of a
typical modern Android device that would be used in a HaaS
system.

We have focused on measuring an initial set of commonly
available device features available to any Android device
(or more generally any modern smartphone), to test whether
standard device states are sufficiently informative for detecting
whether a device is trustworthy or not for sending HaaS
reports. By utilising common device features, we enable the
measurement of device cyber trustworthiness in a generalised
fashion; as experiment results would then be applicable across
a wide range of mobile devices. This is a practical approach
in early experiments to identify whether such shared features
are sufficient for accurately predicting trustworthiness across
different threats, or whether for future experiments more
complex, device specific features are needed.

This work’s primary contributions are:

• Identification of mobile device characteristics that are
indicators of cyber trustworthiness of HaaS reports.

• An initial mechanism for scoring cyber trustworthiness
based on the features identified

• An experimental evaluation of the mechanism in the
presence of two cyber attacks (denial of service and
location spoofing)

A. Cyber Attacks against mobiles in the context of HaaS crime
reporting

We investigate the ability to detect three viable attacks
that would affect crime reporting from a mobile device.
Specifically, we focus on the ability to identify network-based
DoS threats against the availability of mobile reports, location
spoofing and GPS signal spoofing attacks which would attempt
to deceive and influence law enforcement.

1) Network Denial of Service: Depending on the platform
type used (e.g., social media, instant messaging, custom appli-
cation), network-based denial of service attacks against mobile
devices can result in crime report messages being queued
or dropped completely when network connectivity is lost or
saturated. For the former, delayed messages might have a
direct effect on the integrity of reports received at a much
later date from when the related incident actually occurred.
In this case, not only are law enforcement agents potentially
delayed in responding to on-going crimes, but they may
disregard delayed reports if they contradict older messages or
de-prioritise them over newer reports which indicate immediate
threats. For reports that are dropped, crimes would simply
go unreported. Delaying or blocking HaaS reports via DoS
is a highly attractive prospect to organised criminals aiming
to avoid detection (for example when planning to commit a
robbery). We have conducted a network-based denial of service
attack against an Android device 802.11 Wi-Fi interface by
flooding its IP address with ICMP packets to reduce the
devices ability to send reports. The DoS attack was carried
out both when the device was in use and not in use by
a user. Within the experiment environment the attack was
launched in an isolated private Wi-Fi enabled network, with the
android device and attacker machines connected to the same
access point. The attacker machines were then configured to
flood ICMP packets using the tool hping over the network to
Android’s IP address in order to overload the Wi-Fi interface.

2) Location Spoofing: Spoofing attacks deceive targets by
obfuscating or imitating data to elicit a response from a target.
In the context of crime reporting in physical space, by spoofing
a device’s location, would-be attackers are able to send false
reports that would appear to originate from any specific
physical location of their choice. Through location spoofing,
attackers may also be able to make a genuine report originating
from a nearby location appear form a different location which
is far and away from the actual incident location. This infor-
mation poisoning also allows sending reports as a decoy to
physically divert law enforcement from real crimes happening
elsewhere [30]. We have conducted random spoofing of an
Android device’s location by fabricating its Global Positioning
System (GPS) information in order to misrepresent its physical
location, both when the device was in use and not in use by
a user. In the experiment, a mock location provider was built
into the experiment app to send fabricated location data to
the location manager of the Android device. Any application
using the location service of the device would then receive
the fabricated location data from the mock provider. Although
special permissions had to be granted to allow mock locations
to be established, it is possible for a jail-broken (i.e., rooted)
device to set fabricated location data without the need of any
special permissions and there are examples of malware that
perform the rooting of android devices surreptitiously [31].



Feature Description
CPU usage CPU utilisation indicates device load and level of activity on the device and is expected to be low (if not completely idle) when the

device is not actively used. Arbitrary or sustained increases in utilisation (e.g., when no human user is present) could indicate the
presence of malware operating on the device, or processing load from a denial of service threat.

RAM usage Device memory usage increases as the number of running processes (e.g., apps) increases and (in most cases) memory usage decreases
when the device is not used or an application is closed. RAM utilisation of a mobile device may indicate anomalous activity, especially
if there is no active user or open user applications running in memory. Other researchers have monitored deviation from normality
in terms of resource utilisation (e.g. processor and memory usage, I/O operations, storage access, etc.) by different apps or processes
to detect cyber threats [21], [22]. In [21], a ransomware prevention technique has been proposed for the Android platform, which
continuously monitors the CPU usage, memory usage, number of input/output operations and storage accesses, etc., using statistical
methods to differentiate between normal and abnormal uses based on these features.

Network traffic Volume and ratio of network traffic are consistently used as key indicators of anomalous behaviour in intrusion detection systems
and denial of service defence [23]. Since smartphones rely heavily on network connectivity, measuring a smartphone’s traffic profile
becomes crucial to protect against integrity and availability threats. For example, an abnormal increase in the amount of incoming,
unsolicited network traffic might indicate the manifestation of network flooding attack. Here, we also include network traffic received
(Rx) and sent (Tx ) as well as the ratio of network traffic received over the total network traffic, which is Rx

Rx+Tx
, as an

indication of network traffic proportionality. In related work researchers have employed ratio of transmitted and received data for
detecting the presence of malware on smartphones [24]–[26].

GPS SNR This is a binary value denoting whether the Global Positioning System (GPS) Signal-to-Noise Ratio (SNR) has changed since the
last measurement. Due to the distance they cover (from satellites to Earth), mobility and environmental conditions, legitimate GPS
signals received by smartphones vary considerably in time in terms of their signal-to-noise ratio. This is a simple binary metric
capturing this aspect. Spoofed and jamming GPS signals are of terrestrial origin and as such may exhibit different SNR behaviour.

Location
accuracy

Android devices can collect the geographical location of a device from their GPS, WiFi, Bluetooth or mobile network. Android
location services is often used to provide location estimates and uses a confidence factor referred to as ‘Accuracy’. For example,
if device location is reported with an accuracy of 20metres, then there is a 68% probability that the true location of the device is
inside the area covered, within a radius of 20m central from the reported latitude and longitude [27]. We collect device location and
compare its corresponding accuracy to see if there is any change from normality. Previous research has used location to identify
anomalies on mobile devices [28], [29]. Here, we define a change of location accuracy as a binary value denoting whether it has
changed since last measurement. The logic here is the same as with the equivalent metric for GPS SNR.

Power
consumption

Power consumption of smartphones follows a pattern and this pattern changes according to the users location as the usage level of
the mobile phones greatly varies based on their location. Research [28], [29] suggests that it is possible to detect malware infection
of smartphones by analysing their power consumption patterns that are, in turn, location dependent. There are certain places for each
mobile user where the power consumption is low and these are the places wherein abnormality caused by a malware is more likely
to be detected [29]. In [29] researchers have used the cellular network and wifi connections for determining a users location.

TABLE I: Mobile device cyber trustworthy features

3) GPS Spoofing: Here, the location is spoofed not pro-
grammatically, but physically by generating fake GPS sig-
nals using a Software Defined Radio (SDR) transmitter (e.g.
HackRF One). An SDR is a radio communication system
where some of its components are implemented using software
on a personal computer that are typically implemented in
dedicated hardware components. HackRF One is an open
source hardware peripheral which can be connected to a
computer using the USB port. It is a half-duplex transceiver
which can transmit or receive radio signals with the frequency
ranging from 1 MHz to 6 GHz [32].

B. Experimental environment

For our experiments, we have produced the three different
attack scenarios described above. Figure 1 shows the attack
environment of the DoS attack on the wireless network,
where we have used a wireless router that provided a wifi

network from which a mobile user was able to send and
receive information using messaging apps (e.g. WhatsApp) and
carry out other usual activities such as installing or updating
an app. The mobile device was running Android Version:
6.0.1 (Marshmallow) and Java Version: 8 (1.8 JRE). The
mobile phone is configured to allow the location services of
the phone to accept mock locations provided by a location
spoofing software. The location services of an Android device
is responsible for updating the geographical location of the
device and allow other applications to obtain that geographical
location. Generally, the location services manager gets the
location of the device from its GPS, WiFi, Bluetooth or mobile
network. However, when the location services manager gets a
mock location (not its real location) from another software (a
location spoofing software), all other services on the phone
think that the phone is really in that mock location, which is
not true. Figure 2 shows how to change the device settings on



Fig. 1: Attack environment for network denial of service
consists of an Android phone, a laptop and a wireless router

Fig. 2: The Android device setting which enables a location
spoofing app to provide a mock (untrue) location of the device

an Android device so that it allows an application to provide
a mock location of the device which is not its real location.
This represents the case wherein the device has been infected
with malware, which modifies programmatically the location
reported by the device.

Figure 3 shows the attack environment for hardware as-
sisted location spoofing using Software Defined Radio (SDR)
transmitter. In this scenario, the SDR transmitter transmits a
radio signal containing a specific geographic coordinate which
is not the real coordinates of that location and thus, influences
the location services of the Android device. As a result, the
geographical location calculated by the GPS module of the
device becomes inaccurate.

1) Device Monitoring Modules: In Figure 5, we provide
a schematic view of the Android monitoring system, with a
breakdown of the individual modules that are used to collect

Fig. 3: Attack environment of hardware-assisted location
spoofing consists of an Android phone, a laptop and a software
defined radio (SDR) transmitter (HackRF)

Fig. 4: Sreenshot of the Monitoring App installed on a User
Device

device features for calculating a device’s cyber-trustworthiness
score.

The monitoring system has been designed with modu-
larity in mind, where the aim is to provide a platform for
straightforward integration of new (or removal of old) device
sensors, interfaces and data without requiring significant re-
development. Each monitoring module runs in the background
as a separate instance with its own task thread. As a result,
the main program routine remains free to perform other tasks
within the application. The monitoring modules can run in two
modes: continuous or limited. This gives more flexibility to
how data can be collected. In continuous mode, the module
will collect samples forever unless interrupted by another
program flow. Whereas, a module in limited mode will only
collect the specified number of samples. All the modules
behave in the same manner, regardless of the data samples
they collect. Since each of these modules is a subclass derived
from a module superclass, the superclass can handle the core
behaviour and provide general implementation for all modules,
while the individual monitoring modules in the subclasses
provide module specific implementation (e.g. the data to be
collected by the module). This also grants the advantage of
being able to add new monitoring modules efficiently as new
modules can inherit core implementation and behaviour from
the superclass. This thereby effectively sets a standard for
all monitoring modules and ensures coherence between the
different modules.

When a module is started with its specified run mode,
the module will first collect any invariable data (referred to
as constant samples in the flowchart shown in Figure 5)
that remains constant during a specific session or the life
time of the device e.g. Wi-Fi security protocol used, size of
the RAM, etc. and then, collect variable (changing) samples
periodically according to the set time interval. For example,
while monitoring the Wi-Fi connectivity, we may first record



Fig. 5: Monitoring Module Schematic View

the security protocols being used (as invariable data) and
then record the total number of Tx (transmitted data) and Rx
(received data) bytes (as variable samples) every five seconds.
Additionally, each monitoring module instance has its own
logger object, which the module uses to log their gathered
sample data to various data files within the application.

Lastly, a module listener interface is provided, which
allows a subscriber (listener) to receive event based triggers
from the modules. Therefore, allowing other program flows to
be aware of the current status of the modules and perform tasks
based on the module state without having to continually poll
the modules. For example, after a module in a limited mode
run has collected all required samples and publish completed,
another program flow can then begin processing the data
gathered by the module. This listener interface effectively
allows the application to dynamically react to the current status
of each individual monitoring module.

IV. STATISTICAL ANALYSIS AND EXPERIMENTAL
RESULTS

The prediction of whether a device is trustworthy or not
can be viewed as a typical binary classification problem. As
our aim is to evaluate whether certain cyber features’ temporal
states are associated with device trustworthiness, we employ
different machine learning techniques to identify an optimum
modelling approach. For this, we have selected to use Logistic
Regression (LR), Random Forest (RF) and Support Vector

Machines (SVM). LR is an obvious choice for modelling linear
relationships between a categorical response variable and one
or more categorical or continuous predictor variables because
it operates as a special case linear model where the respond
variable is binomial. RF and SVM, by comparison are more
suited for revealing non-linear relationships between predictor
variables and a binary response variable. Here, we have used
SVM with a radial basis function which is more efficient
for identifying non-linear relationships in a dataset [33]. RF
is a naturally non-linear machine learning algorithm which
models an ensemble of decision trees with each containing
re-sampled versions of the original dataset. The approach is
effective because it implicitly reduces the variance that is
expected in a decision single tree and improving the general
accuracy of the model by averaging the standard error of all
decision trees. In RF each decision tree employs Boolean logic
in a series of decision rules by evaluating a random subset
of n features at each decision split to determine which class
(e.g., trustworthy/untrustworthy) a feature’s value belongs to;
which means by default RF does not presume linearity in the
modelling process. In classification tasks, the majority vote in
each decision tree split is used to determine the class of a
feature value.

By training a model on the average output of grouped time-
sensitive features we facilitate the capture of temporal states
in device modules based on different snapshots in time; which
may be missed by modelling stateless, individual sample ob-
servations. During the model training phase of the experiments
it was identified that the RAM, Tx and Rx feature for location
spoofing attacks were causing significant over-fitting of each of
the machine learning models, which resulted in over-optimistic
prediction results. This occurred because the RAM feature was
not sufficiently obfuscated by general user application noise,
and therefore clearly revealing when the software location
spoofing was occurring. In the case of the network features
Tx and Rx, they were required to be turned off when using
the hard-assisted location spoofing and therefore were omitted
from the modelling. In future experiments modelling with the
RAM feature requires the injection of residual application use
to add noise to the feature.

The bar graph in Figure 6 and Table II show the accu-
racy and overall performance of each classifier for a mobile
device under DoS and location spoofing attacks, respectively.
Unsurprisingly, for the DoS attack all three classifiers were es-
sentially equal in their detection accuracy, which is somewhat
expected given the relative simplicity of the attacks behaviour
(being a brute force ICMP flood). For all models, detection
accuracy was much less accurate in both (types of) location
spoofing attacks, but still sufficiently more accurate than the
null model for each attack. For instance, for the software and
hardware-assisted attacks the null model (e.g., model without
features) is able to achieve an accuracy of 59% and 57%,
respectively, but the SVM and RF models achieved classifica-
tion accuracies of 73% and 78% for these respective attacks;
proving the viability of the selected features for the detection of
cyber trustworthiness in our experiment attack cases. Overall
LR was the worst performing of the three classifiers with
an accuracy of 70% (the same as RF but less precise with
more false positives) for the software spoof and 61% for
the hardware-assisted spoof. The result indicates the lesser
practicality of using simpler statistical approaches such as LR



Fig. 6: Attack detection accuracy for Logistic Regression,
Random Forest and Support Vector Machine classifiers for
DoS and Location spoofing attacks

against a range of attacks where threats do not necessarily
indicate an obvious linear change in specific device modules.
Whilst SVM and RF exhibited similar performances for all
attacks, overall RF was the best performing classifier for each
attack with the majority of modelling results showing higher
precision, lower false negatives (i.e., untrusted device classified
as trusted) and false positives (i.e., trusted device classified as
untrusted) than both LR and SVM. By exception for software
location spoofing the SVM model was 3% more accurate and
detected more true positives (e.g., attack states). Nevertheless,
for the attacks evaluated and the results presented in our early
experiments RF seems to be an accurate classifier for detecting
multiple dissimilar threats against a mobile device. We have
used the Caret package within R-Studio to model each of the
classifiers.

Model Attack ACC Prec TPR TNR FPR FNR

LR
DoS 0.96 0.98 0.97 0.94 0.06 0.03
Loc. spoof (Mock app) 0.70 0.62 0.72 0.69 0.38 0.28
Loc. spoof (HackRF) 0.61 0.54 0.62 0.59 0.41 0.38

SVM
DoS 0.96 0.97 0.98 0.92 0.08 0.02
Loc. spoof (Mock app) 0.73 0.67 0.68 0.77 0.23 0.32
Loc. spoof (HackRF) 0.74 0.72 0.66 0.8 0.20 0.34

RF
DoS 0.97 0.98 0.99 0.94 0.06 0.02
Loc. spoof (Mock app) 0.70 0.70 0.47 0.86 0.14 0.53
Loc. spoof (HackRF) 0.78 0.80 0.66 0.87 0.13 0.34

TABLE II: Attack modelling performance for Logistic Regres-
sion, Random Forest and Support Vector Machine classifiers,
all models were statistically significant at the 0.001 level

To better understand how each of the features evaluated
influence the classification for the three models tested, we
use variable importance, which provides a common measure
of how much each model feature influences the accuracy of
prediction of the dependent variable. Whilst in general linear
models the t statistic is used to calculate variable performance,
for Random Forest out-of-bag error is used and for SVM the
area under the ROC curve is computed for each feature in
the model to calculate variable performance. So, whilst each

model’s variable important calculation for each of the cyber
features are not directly comparable, they provide an indication
of which features are the most indicative of a threat against
the mobile device; which helps to identify whether there are
commonalities between certain features that are useful for
measuring cyber trustworthiness.

In Tables III, IV and V, the variable importance for
the DoS, software location spoofing and hardware location
spoofing attacks features are shown, respectively. Interestingly,
RF as the best performing model also produced variable
importance values that contextually relate to the expected pri-
mary explanatory features of each attack. For example, it was
expected in the DoS attack that received traffic (e.g., Rx) would
be a primary feature of a network-based DoS which is backed
up by Tx variable importance which represents response from
the mobile to the ICMP flood. For each of the location spoofing
attacks signal to noise ratio (SNR) was important in identifying
the threat, whereas for the software spoofing location accuracy
also played a role in helping identify the attack. On the
contrary, the CPU feature seemed to be more informative
for detecting when a hardware-assisted location spoofing at-
tack was occurring. Similar to the RF model, both LR and
SVM variable importance reported contextually relevant values
for each respective feature, but assigned different values to
RF. In practice, the machine learning algorithms can have a
symptomatic effect on various feature choices (such as feature
weight bias) due to their different algorithmic treatment of
feature values and the associated output.

Feature LR RF SVM
RAM 100% 9.18% 0 %
CPU 77.6% 0 % 19.93%
Tx 3.12% 32.10% 98.78%
Rx 38.29% 100% 100 %
Rx/(Rx+Tx) 35.5% 32.10 % 90.62%

TABLE III: Model variable importance for DoS attack

Feature LR RF SVM
SNR 0 % 100% 0%
Loc. Accuracy 77.44% 10.78% 24%
CPU 100% 0 % 100%

TABLE IV: Model variable importance for software-based
location spoofing (mock app)

Feature LR RF SVM
SNR 0.7% 35.53% 100%
Loc. Accuracy 0 % 0 % 46.51 %
CPU 100% 100 % 0%

TABLE V: Model variable importance for hardware-assisted
software-defined radio location spoofing (HackRF)

A. Scoring Trustworthiness: A probability measure

Binary classifiers are useful for detecting whether a mobile
device is under attack or not, but are somewhat less helpful for
generating a relative cyber trustworthiness score. Irrespective
of a reports context or severity, the profile of the device would
be either “trustworthy” or “not trustworthy”. Consequently,



Fig. 7: RF DoS (blue dashed curve), mock app GPS spoof-
ing (black curve) and hardware assisted location spoofing -
HackRF (orange curve) classification ROC curve with TPR
and FPR threshold

reliance on strict classification of reports prevents recipients
(such as law enforcement or emergency services) from pri-
oritising or correlating report cyber trustworthiness scores.
Furthermore, optimisation of a two level scoring measure
becomes difficult because one must employ a single threshold
criterion (e.g., probability = 0.5) to determine whether a report
is trustworthy or not; thus limiting the ability for dynamic
filtering of inaccurate report scores (e.g., false positives, false
negatives etc.).

A more practical approach would be to utilise the class
probability of a report (i.e., the likeliness of the device being
under attack / an attacker or not) to evaluate a mobile device’s
cyber trustworthiness. Using this approach, the probability
response forms an automatic scoring measure that informs
report recipients of the level of trust (and confidence) that
can be applied to the report data. For instance, a report
with a device cyber trustworthiness score of 90% would tell
report recipients that it is highly unlikely that the device has
been compromised or is the device of an attacker, whereby
comparison a probability of 10% would almost certainly
indicate that the device was compromised in some way or
indeed an attacker. The resultant probability value also serves
to help expedite the most trustworthy reports, which avoids
spending time processing reports that may be fake or those
intended to create noise and confusion. Moreover, by utilising
class probability as a scoring metric, correlation and clustering
analysis can be used to group similar trustworthiness results to
compare report information which would build a picture of a
particular incident or crime through an aggregate trusted view.

In Figures 7 (for true positive rate) and 8 (for true nega-
tive rate), the receiver operating characteristic (ROC) curves
demonstrate the optimal probability thresholds for each of
the attacks evaluated in our experiments. The ROC curve
helps to identify different thresholds for minimising false

Fig. 8: RF DoS (blue dashed curve), mock app GPS spoof-
ing (black curve) and hardware assisted location spoofing -
HackRF (orange curve) classification ROC curve with TNR
and FNR threshold

negatives, false positives or achieving the highest classification
accuracy. They can therefore be used as a tool for determining
the likeliness of cyber trustworthiness accuracy at different
probability thresholds, with indications of what cut-off point
a probability threshold minimises mis-classification. This is
also useful criterion upon which to benchmark cyber trustwor-
thiness probability results, as probability thresholds between
this cut-off point can be prioritised over lower probability
thresholds that drop below the cut-off, with confidence of their
accuracy.

V. CONCLUSION

The HaaS paradigm is utilised increasingly and in a variety
of applications where human users can act as sensors or early
warning detectors of events and incidents, from policing and
emergency response to pollution detection. A critical factor
for the success of HaaS is to be able to estimate or predict
the reliability of reports received from human sensors. This
depends on the ability of the human sensors themselves (are
they able to detect accurately and are they trustworthy?), as
well as the trustworthiness of the devices and infrastructures
they use to generate and communicate these reports. Here, the
focus was on what we referred to as the cyber-trustworthiness
of HaaS reports coming from Android mobile devices; which
we have defined as a probability measure of whether the
device is trusted or not. As a first attempt in this direction, we
utilised three standard statistical machine learning approaches
for estimating the likelihood of existence of three different
attacks, one relating to the health of the network used to
communicate the reports, and two relating to the integrity
and accuracy of the locations reported. Our initial results
show that even a small number of easily monitored features
can help estimate HaaS cyber-trustworthiness and enhance the
reliability of the paradigm.
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[23] G. Loukas and G. Öke, “Protection against denial of service attacks: A
survey,” The Computer Journal, p. bxp078, 2009.

[24] L. Xue and G. Sun, “Design and implementation of a malware detection
system based on network behavior,” Security and Communication
Networks, vol. 8, no. 3, pp. 459–470, 2015. [Online]. Available:
http://dx.doi.org/10.1002/sec.993

[25] G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio,
“Acquiring and analyzing app metrics for effective mobile malware
detection,” in Proceedings of the 2016 ACM on International
Workshop on Security And Privacy Analytics, ser. IWSPA ’16.
New York, NY, USA: ACM, 2016, pp. 50–57. [Online]. Available:
http://doi.acm.org/10.1145/2875475.2875481

[26] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss,
““andromaly”: a behavioral malware detection framework for android
devices,” Journal of Intelligent Information Systems, vol. 38, no. 1,
pp. 161–190, 2012. [Online]. Available: http://dx.doi.org/10.1007/
s10844-010-0148-x

[27] Android Developers), “Location - getAccuracy,” https:
//developer.android.com/reference/android/location/Location.html#
getAccuracy%28%29, Accessed on 14/03/2017.

[28] B. Dixon, S. Mishra, and J. Pepin, “Time and location power based
malicious code detection techniques for smartphones,” in 2014 IEEE
13th International Symposium on Network Computing and Applications,
Aug 2014, pp. 261–268.

[29] B. Dixon, Y. Jiang, A. Jaiantilal, and S. Mishra, “Location based power
analysis to detect malicious code in smartphones,” in Proceedings of the
1st ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices, ser. SPSM ’11. New York, NY, USA: ACM, 2011, pp. 27–32.
[Online]. Available: http://doi.acm.org/10.1145/2046614.2046620

[30] G. Loukas, Cyber-physical attacks: A growing invisible threat.
Butterworth-Heinemann, 2015.

[31] The Register, “Android-rooting Gooligan malware infects 1 million
devices,” https://www.theregister.co.uk/2016/11/30/gooligan android
malware/, 2016, Accessed on 04/003/2017.

[32] Michael Ossmann, “HackRF One,” https://github.com/mossmann/
hackrf/wiki/HackRF-One, Accessed on 20/03/2017.

[33] S. S. Keerthi and C. J. Lin, “Asymptotic behaviors of support vector
machines with gaussian kernel,” Neural computation, vol. 15, no. 7, pp.
1667–1689, 2003.

https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
http://thehub.smsglobal.com/smartphone-ownership-usage-and-penetration
http://thehub.smsglobal.com/smartphone-ownership-usage-and-penetration
http://doi.acm.org/10.1145/2187980.2188183
http://doi.acm.org/10.1145/2396761.2398732
http://doi.acm.org/10.1145/1772690.1772777
http://dx.doi.org/10.1007/s11292-006-9018-5
http://dl.acm.org/citation.cfm?id=2540128.2540328
http://dx.doi.org/10.1186/2196-064X-1-5
http://dx.doi.org/10.1007/978-3-642-29963-6_16
http://www.google.com/patents/US20120054823
http://dx.doi.org/10.1002/sec.993
http://doi.acm.org/10.1145/2875475.2875481
http://dx.doi.org/10.1007/s10844-010-0148-x
http://dx.doi.org/10.1007/s10844-010-0148-x
https://developer.android.com/reference/android/location/Location.html#getAccuracy%28%29
https://developer.android.com/reference/android/location/Location.html#getAccuracy%28%29
https://developer.android.com/reference/android/location/Location.html#getAccuracy%28%29
http://doi.acm.org/10.1145/2046614.2046620
https://www.theregister.co.uk/2016/11/30/gooligan_android_malware/
https://www.theregister.co.uk/2016/11/30/gooligan_android_malware/
https://github.com/mossmann/hackrf/wiki/HackRF-One
https://github.com/mossmann/hackrf/wiki/HackRF-One

	Introduction
	Related Work
	Modelling the cyber trustworthiness of mobile HaaS reports
	Cyber Attacks against mobiles in the context of HaaS crime reporting
	Network Denial of Service
	Location Spoofing
	GPS Spoofing

	Experimental environment
	Device Monitoring Modules


	Statistical analysis and experimental results
	Scoring Trustworthiness: A probability measure

	Conclusion
	References

